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Abstract. We give a new constraint qualification which guarantees strong
duality between a cone constrained convex optimization problem and its Fenchel-
Lagrange dual. This result is applied to a convex optimization problem having,
for a given non-empty closed convex cone K, as objective function a K-convex
function postcomposed with a K-increasing convex function. For this so-called
composed convex optimization problem we present a strong duality assertion,
too, under weaker conditions than the ones considered so far. As application we
show that the formula of the conjugate of a postcomposition with a K-increasing
convex function is valid under weaker conditions than the ones existing in the
literature.
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1 Introduction

A natural generalization of the optimization problems that consist in minimizing a
function subject to the negativity of some other functions comes from considering
the constraint functions as smaller than zero from the perspective of a partial
ordering induced by a non-empty closed convex cone. Many mathematicians
have considered such problems in various contexts and the authors of the present
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paper have some contributions to the literature regarding this special kind of
optimization problems too, through to the papers [2], [3], [4], [17], [18] and [19].

The objective functions of the optimization problems may have different for-
mulations, too. Many convex optimization problems arising from various di-
rections may be formulated as minimizations of some compositions of functions
subject to some constraints. We cite here [5], [6], [13], [14] and [16] as articles
dealing with composed convex optimization problems. Duality assertions for this
kind of problems may be delivered in different ways, one of the most common
consisting in considering an equivalent problem to the primal one, whose dual is
easier determinable. If the desired duality results are based on conjugate func-
tions, sometimes even a more direct way is available by obtaining a dual problem
based on the conjugate function of the composed objective function of the primal,
which is writable, in some situations, by using only the conjugates of the func-
tions involved and the dual variables. Depending on the framework, the formula
of the conjugate of the composed functions is taken mainly from [6], [10], [11] or
[12].

With this paper we bring weaker conditions under which the known formula of
the conjugate of a composed function holds when one works in R

n. No closedness
or continuity concerning the functions composed is necessary, while the regularity
condition saying that the image set of the postcomposed function should contain
an interior point of the domain of the other function is weakened to a relation
involving relative interiors which is actually implied by the first one. This im-
portant result is present in our paper as an application, followed by the concrete
case of calculating the conjugate of 1/F , when F is a concave strictly positive
function defined over the set of strictly positive reals. The theoretical part of
the paper consists in presenting duality assertions concerning a cone constrained
convex optimization problem and its Fenchel-Lagrange dual problem. This prob-
lem has been introduced by Boţ and Wanka (see, for example, [1], [2], [3] or [4])
and is a combination of the widely-used Lagrange and Fenchel dual problems.

The conditions under which the strong duality takes place for the cone con-
strained problem are weaker than the ones considered usually for this kind of
problems, i.e. instead of asking for a feasible point at which the value of the
constraint function should be an interior point of the negative cone (the classical
Slater constraint qualification), we need this value to belong only to the relative
interior of the negative cone while the variable belongs to the relative interior of
the constraint set. Therefore this strong duality assertion proves to be valid also
for convex problems whose constraints involve cones with empty interiors. Frenk
and Kassay in [8] and [9] and Boţ, Kassay and Wanka in [2] used this kind of
constraint qualifications even under generalized convexity assumptions.

The ordinary convex program (cf. [7] and [15]) is given as a special case. Then
we consider as objective function the postcomposition of a K-increasing convex
function to a K-convex function for a given non-empty closed convex cone K.
Strong duality holds here under weaker conditions than the ones taken so far
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in the literature. As a special case we eliminate the constraint functions. The
strong duality statement obtained for this unconstrained problem is used later
for the above mentioned application.

The structure of the paper arises quite naturally. The next section is dedicated
to the general cone constrained convex optimization problem and the third to the
composed optimization problem. The application consisting in the determination
of the formula of the conjugate function of a composed function follows, while a
short conclusive section and the list of references close the paper.

2 The cone constrained convex optimization

problem

2.1 Preliminaries

We present here the notations and some not so widely-known denotations used
within this paper. As usual, R

n denotes the n-dimensional real space for any
positive integer n. Throughout this paper all the vectors are considered as column
vectors belonging to R

n, unless otherwise specified. An upper index T transposes
a column vector to a row one and viceversa. The inner product of two vectors

x =
(
x1, ..., xk

)T
and y =

(
y1, ..., yk

)T
in the k-dimensional real space is denoted

by xT y =
∑k

i=1 xiyi. To write the relative interior of a set we use the prefix ri,
while for the effective domain of a function f : R

n → R = R ∪ {±∞} we use the
notation dom(f) =

{
x ∈ R

n : f(x) < +∞
}
. For some set X ⊆ R

n we use the

well-known indicator function δX : R
n → R defined by

δX(x) =

{
0, if x ∈ X,
+∞, if x /∈ X.

For D ⊆ R
n and a function f : D → R we remind of the definition of the

so-called conjugate function relative to the set D

f ∗
D : R → R, f ∗

D(p) = sup
x∈D

{
pT x − f(x)

}
.

When f : R
n → R and D = dom(f) we obtain actually the classical (Legendre

- Fenchel) conjugate function denoted by f ∗.
Concerning the conjugate functions we have the following inequality known

as the Fenchel-Young inequality

f ∗
D(p) + f(x) ≥ pT x ∀x ∈ D ∀p ∈ R

n.

Having now a given non-empty closed convex cone K in R
k we define two

properties involving it that play an important role throughout this paper.
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Definition 1. When D ⊆ R
k a function f : D → R is called K-increasing if

for x, y ∈ D such that x − y ∈ K, follows f(x) ≥ f(y).

Definition 2. Given a subset X ⊆ R
n, a function F : X → R

k is called
K-convex if for any x and y ∈ X and λ ∈ [0, 1] one has

λF (x) + (1 − λ)F (y) − F
(
λx + (1 − λ)y

)
∈ K.

2.2 Duality for the cone constrained convex optimization
problem

In order to formulate the general cone constrained convex optimization problem
we want to deal with throughout this section the following sets and functions
must be given. Let X be a non-empty convex subset of R

n, C a non-empty
closed convex cone in R

m, f : X → R a convex function and g : X → R
m a

C-convex function. The problem we consider is

(P ) inf
x∈X,

g(x)∈−C

f(x),

called further the primal problem. To (P ) we attach a dual problem. This dual
problem may be obtained by perturbations (cf. [1], [2] or [17]) or as we derive
it within the proof of the strong duality theorem. It is called Fenchel-Lagrange
dual problem because of the way it was obtained and it is

(D) sup
q∈C∗,
p∈R

n

{
− f ∗

X(p) −
(
qT g

)∗
X

(−p)
}

,

where by qT g we denote the function defined on X whose value at any x ∈ X
is equal to

∑m

j=1 qjgj(x), with q = (q1, ..., qm)T . Denoting by v(P ) the optimal
objective value of the problem (P ), v(D) is, obviously, the optimal objective value
of (D).

The so-called weak duality holds between (P ) and (D), i.e. v(P ) ≥ v(D).
The proof arises straightforwardly from the construction of the dual problem. In
order to formulate the strong duality statement, i.e. some sufficient conditions
that imply the equality between the optimal objective values of the primal and
dual problem, we introduce the following constraint qualification (cf. [9])

(CQ) 0 ∈ ri
(
g(X) + C

)
.

Theorem 1. Consider the constraint qualification (CQ) fulfilled. Then there
is strong duality between the problem (P ) and its dual (D) and the latter has an
optimal solution if v(P ) > −∞.
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Proof. The Lagrange dual problem to (P ) is

(DL) sup
q∈C∗

inf
x∈X

[
f(x) + qT g(x)

]
.

According to [9], the fulfillment of (CQ) together with the convexity assumptions
introduced before are sufficient to assure the coincidence of v(P ) and v(DL),
moreover guaranteeing the existence of an optimal solution q̄ to (DL) when
v(P ) > −∞. Now let us write the Fenchel dual problem to the inner infimum in
(DL). For q ∈ C∗, both f and qT g are real-valued convex functions defined on X,
so in order to apply rigourously Fenchel’s duality theorem (cf. [15]) we have to

consider their convex extensions to R
n, say f̃ and q̃T g, which take the value +∞

outside X. As dom(f̃) = dom
(
q̃T g

)
= X and ri(X) 6= ∅ due to the convexity of

the non-empty set X, we have (cf. Theorem 31.1 in [15])

inf
x∈X

[
f(x) + qT g(x)

]
= inf

x∈Rn

[
f̃(x) + q̃T g(x)

]
= sup

p∈Rn

{
− f̃ ∗(p) − q̃T g

∗
(−p)

}
,

with the existence of a p̄ where the supremum on the right-hand side is attained
granted. As it is not difficult at all to notice that f̃ ∗(p) = f̃ ∗

X(p) = f ∗
X(p) and

q̃T g
∗
(−p) = q̃T g

∗

X(−p) =
(
qT g

)∗
X

(−p) it is straightforward that

v(P ) = sup
q∈C∗

inf
x∈X

[
f(x) + qT g(x)

]
= sup

q∈C∗,
p∈R

n

{
− f ∗

X(p) −
(
qT g

)∗
X

(−p)
}

.

In case v(P ) is finite, because of the existence of an optimal solution for the
Lagrange dual and the Fenchel dual, we get

v(P ) = sup
q∈C∗

inf
x∈X

[
f(x) + qT g(x)

]
= inf

x∈X

[
f(x) + q̄T g(x)

]
= f ∗

X

(
p̄
)
−

(
q̄T g

)∗
X

(−p̄),

which is exactly that (D) has an optimal solution (p̄, q̄). �

Remark 1. One may notice that the constraint qualification (CQ) is sufficient
to assure strong duality for both Lagrange and Fenchel-Lagrange dual problems.

Now let us deliver necessary and sufficient optimality conditions regarding the
problems (P ) and (D). The proof of the following theorem is similar to those in
the papers [1] and [17], that is why we omit it here.

Theorem 2.

(a) If the constraint qualification (CQ) is fulfilled and the primal problem (P )
has an optimal solution x̄, then the dual problem has an optimal solution
(p̄, q̄) and the following optimality conditions are satisfied
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(i) f ∗
X(p̄) + f(x̄) = p̄T x̄,

(ii)
(
q̄T g

)∗
X

(−p̄) + q̄T g(x̄) = −p̄T x̄,

(iii) q̄T g(x̄) = 0.

(b) If x̄ is a feasible point to the primal problem (P ) and (p̄, q̄) is feasible to the
dual problem (D) fulfilling the optimality conditions (i)-(iii), then there is
strong duality between (P ) and (D) and the mentioned feasible points turn
out to be optimal solutions of the corresponding problems.

Remark 2. We need to mention that (b) applies without any convexity as-
sumption as well as constraint qualification. So the sufficiency of the optimality
conditions (i)-(iii) is true in the most general case.

The fulfilment of the constraint qualification (CQ) seems quite hard to be ver-
ified sometimes, that is why we provide the following equivalent formulation to it.

Theorem 3. The constraint qualification (CQ) is equivalent to

(CQ′) 0 ∈ g
(
ri(X)

)
+ ri(C),

where g, X and C are as introduced in the beginning of the section.

Proof. Consider the set

M :=
{
(x, y) : x ∈ X, y − g(x) ∈ C

}
,

which is easily provable to be convex. For each x ∈ X consider now the set
Mx :=

{
y ∈ R

m : (x, y) ∈ M
}
. When x /∈ X is is obvious that Mx = ∅, while

in the opposite case we have y ∈ Mx ⇔ y − g(x) ∈ C ⇔ y ∈ g(x) + C, so we
conclude

Mx =

{
g(x) + C, if x ∈ X,
∅, if x /∈ X.

Therefore Mx is also convex for any x ∈ X. Let us see now how we can character-
ize the relative interior of the set M . According to Theorem 6.8 in [15] we have
(x, y) ∈ ri(M) if and only if x ∈ ri(X) and y ∈ ri(Mx). On the other hand, for
any x ∈ ri(X) ⊆ X, y ∈ ri(Mx) means actually y ∈ ri

(
g(x) + C

)
= g(x) + ri(C),

so we can write further

ri(M) =
{
(x, y) : x ∈ ri(X), y − g(x) ∈ ri(C)

}
.

Consider now the linear transformation A : R
n ×R

m → R
m defined by A(x, y) =

y. Let us prove that A(M) = g(X) + C. Take first an element y ∈ A(M). It
follows that there is an x ∈ X such that y−g(x) ∈ C, which yields y ∈ g(X)+C.
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Reversely, for any y ∈ g(X) + C there is an x ∈ X such that y ∈ g(x) + C, so
y − g(x) ∈ C. This means (x, y) ∈ M , followed by y ∈ A(M).

Regarding the relative interior in (CQ) we have (applying Theorem 6.6 in
[15])

ri
(
g(X) + C

)
= ri

(
A(M)

)
= A

(
ri(M)

)
= g

(
ri(X)

)
+ ri(C),

so (CQ) and (CQ′) are equivalent. �

We give now a concrete problem that shows that a relaxation of (CQ′) by
considering the whole set X instead of its relative interior does not guarantee
strong duality.

Example 1. Let f, g : R
2 → R be defined by f

(
(x1, x2)

)
= x2 and g

(
(x1, x2)

)
=

x1, respectively. It is obvious that both are convex functions. Consider also the
set

X =

{
x = (x1, x2) ∈ R

2 : 0 ≤ x1 ≤ 2,
3 ≤ x2 ≤ 4, if x1 = 0,
1 < x2 ≤ 4, if x1 > 0

}

and formulate the problem

(P1) inf
x∈X,

g(x)=0

f(x).

This problem fits into our scheme for C = {0}. The constraint qualification (CQ)
becomes in this case 0 ∈ ri([0, 2] + 0) = (0, 2), that is false. On the other hand
the condition 0 ∈ g(X) + ri(C) is fulfilled, being in this case 0 ∈ [0, 2], that is
true.

As in [7], where this example has been borrowed from, the optimal objective
value of (P1) turns out to be v(P1) = 3, while the one of the Lagrange dual
problem is 1. Because of the convexity of the functions and sets involved the
optimal objective value of the Lagrange dual coincides with the one of (D) in
this case (see the proof of Theorem 1).

Therefore we state that a relaxation of (CQ′) by considering g(X) instead of
g(ri(X)) does not guarantee strong duality.

We would like also to mention that Frenk and Kassay have shown in [8] that
if there is an y0 ∈ aff(g(X)) such that g(X) ⊆ y0 + aff(C) then 0 ∈ g(X) + ri(C)
becomes equivalent to (CQ). For any M ⊆ R

n, aff(M) means the affine hull of
the set M .

2.3 The ordinary convex programs as special case

The ordinary convex programs (cf. [15]) may be included among the problems
to which the duality assertions formulated earlier are applicable. Consider such
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an ordinary convex program

(Po) inf
x∈X,

gi(x)≤0,i=1,...,r,
gj(x)=0,j=r+1,...,m

f(x),

where X ⊆ R
n is a convex set, f and gi, i = 1, ..., r, are convex real-valued

functions defined on X and gj : R
n → R, j = r + 1, ...,m, are affine functions.

Denote g = (g1, ..., gm)T . This problem is a special case of (P ) when we consider
the cone C = R

r
+ × {0}m−r. The Fenchel-Lagrange dual problem to (Po) is

(Do) sup
q∈R

r
+
×{0}m−r ,

p∈R
n

{
− f ∗

X(p) −
(
qT g

)∗
X

(−p)
}

.

The constraint qualification that assures strong duality is in this case

(CQo) 0 ∈ ri
(
g(X) + R

r
+ × {0}m−r

)
,

equivalent to 0 ∈ g
(
ri(X)

)
+ ri

(
R

r
+ × {0}m−r

)
, i.e.

(CQo) ∃x′ ∈ ri(X) :

{
gi(x

′) < 0, if i = 1, ..., r,
gj(x

′) = 0, if j = r + 1, ...,m,

which is exactly the sufficient condition given in [15] to state strong duality
between (Po) and its Lagrange dual problem

(DL
o ) sup

q∈R
r
+
×{0}m−r

inf
x∈X

[
f(x) + qT g(x)

]
.

As ri(dom(f)) = ri
(
dom

(
qT g

))
= X 6= ∅, we have that the value of the inner

infimum in (DL
o ), as a convex optimization problem, is equal to the optimal value

of its Fenchel dual, which is exactly the objective function in (Do). The strong
duality statement concerning the problems (Po) and (Do) follows.

Theorem 4. Consider the constraint qualification (CQo) fulfilled. Then there
is strong duality between the problem (Po) and its dual (Do) and the latter has an
optimal solution if v(Po) > −∞.

A special case of (Po) is the following problem, where W is a closed convex
cone in R

n

(Pg) inf
x∈X,x∈W,

gi(x)≤0,i=1,...,r,
gj(x)=0,j=r+1,...,m

f(x),

with the functions and sets defined as above. This problem generalizes, as we have
proved earlier ([1]) the geometric programming problem, for whose strong duality
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assertion also closedness is required in the literature alongside some regularity
condition. Considering the cone C = W × R

r
+ × {0}m−r, (Pg) is rewritable as

(Pg) inf
x∈X,

(−x,g(x))∈−C

f(x).

The constraint qualification (CQ) is in this case

(CQg) ∃x′ ∈ ri(X) : (−x′, g(x′)) ∈ −ri(W ) ×−ri(Rr
+) × {0}m−r,

equivalent to

(CQg) ∃x′ ∈ ri(X) ∩ ri(W ) :

{
gi(x

′) < 0, if i = 1, ..., r,
gj(x

′) = 0, if j = r + 1, ...,m.

As (Pg) is a special case of (P ) its Fenchel-Lagrange dual problem is after a small
transformation

(Dg) sup
q∈R

r
+
×{0}m−r ,

p∈R
n,w∈W ∗

{
− f ∗

X(p) −
(
qT g

)∗
X

(w − p)
}

.

Strong duality stands whenever the constraint qualification (CQg) is fulfilled, no
closedness assumptions being necessary as prerequisite regarding any of the func-
tions involved.

Remark 3. Some authors take as ordinary convex program the following prob-
lem, where f , g and X are defined as before and ”5” is the partial ordering
introduced by the m-dimensional positive orthant considered as cone,

(P ′
o) inf

x∈X,
g(x)50

f(x),

for which the strong duality is attained provided the fulfillment of the constraint
qualification (cf. [1], [7])

(CQ′
o) ∃x′ ∈ ri(X) :

{
gi(x

′) < 0, if i = 1, ..., r,
gj(x

′) ≤ 0, if j = r + 1, ...,m.

A first look would make someone think that (P ′
o) is a special case of (P ) by taking

C = R
m
+ and (CQ) requires in this case the existence of an x′ ∈ ri(X) such that

g(x′) ∈ − ri
(
R

m
+

)
, i.e. for any i = 1, ...,m, gi(x

′) < 0, condition that is stronger
than (CQ′

o). Let us prove that there is another possible choice of the cone C such
that (CQ′

o) implies the fulfilment of (CQ), namely 0 ∈ g(ri(X)) + ri(C) for the
primal problem rewritten as

(P ′
o) inf

x∈X,
g(x)∈−C

f(x).
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Consider (CQ′
o) fulfilled and take the set

I :=
{
i ∈ {r + 1, ...,m} : x ∈ X such that g(x) 5 0 ⇒ gi(x) = 0

}
.

When I = ∅ then for each i ∈ {r + 1, ...,m} there is an xi ∈ X feasible to (P ′
o)

such that gi(x
i) < 0. Take the cone C = R

m
+ . Introducing

x0 :=
m∑

i=r+1

1

m − r + 1
xi +

1

m − r + 1
x′,

we show that it belongs to ri(X). First,

m∑

i=r+1

1

m − r + 1
xi =

m − r

m − r + 1

m∑

i=r+1

1

m − r
xi

and
∑m

i=r+1

(
1/(m − r)

)
xi ∈ X. Applying Theorem 6.1 in [15] it follows that

x0 ∈ ri(X). For any j ∈ {1, ...,m} we have

gj(x
0) ≤

m∑

i=r+1

1

m − r + 1
gj(x

i) +
1

m − r + 1
gj(x

′) < 0.

Therefore there exists x0 ∈ ri(X) such that 0 ∈ g(x0)+ri(C), which is the desired
result.

When I 6= ∅, without loss of generality as we perform at most a reindexing of
the functions gj, r+1 ≤ j ≤ m, let I = {r+ l, ...,m}, where l is a positive integer
smaller than m−r. This means that for j ∈ {r+ l, ...,m} follows gj(x) = 0 if x ∈
X and g(x) 5 0. Then (P ′

0) is a special case of (P ) for C = R
r+l−1
+ ×{0}m−r−l+1.

For each j ∈ {r+1, ..., r+l−1} there is an xj feasible to (P ′
o) such that gj(x

j) < 0.
Taking

x0 :=
r+l−1∑

i=r+1

1

l
xi +

1

l
x′

we have as above that x0 ∈ ri(X) and gj(x
0) < 0 for any j ∈ {1, ..., r + l− 1} and

gj(x
0) = 0 for j ∈ I (because of the affinity of the functions gj, r + 1 ≤ j ≤ m),

which is exactly what (CQ) asserts.
Therefore there is always a choice of the cone C which guarantees that for the

reformulated problem (CQ) stands.

3 The convex optimization problem with com-

posed objective function

3.1 The cone constrained case

Let K and C be non-empty closed convex cones in R
k and R

m, respectively,
and X a convex subset of R

n. Take f : D → R to be a K-increasing convex
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function, with D a convex subset of R
k, F : X → R

k a K-convex function and
g : X → R

m a C-convex function. Moreover, we impose the condition F (X) ⊆ D.
The problem we consider within this section is

(Pc) inf
x∈X,

g(x)∈−C

f(F (x)).

We could formulate its dual as a special case of (P ) since f◦F is a convex function,
but the existing formulae which allow to separate the conjugate of f ◦ F into a
combination of the conjugates of f and F ask the functions to be closed even in
some particular cases (cf. [10], [11]). To avoid this too strong requirement we
formulate the following problem equivalent to (Pc) in the sense that their optimal
objective values coincide,

(P ′
c) inf

x∈X,y∈D,
g(x)∈−C,

F (x)−y∈−K

f(y).

Proposition 1. v(Pc) = v(P ′
c).

Proof. Let x be feasible to (Pc). Take y = F (x). As F (X) ⊆ D, y belongs to
D, too, while F (x) − y = 0 ∈ K (remember that K is non-empty closed). Thus
(x, y) is feasible to (P ′

c) and f(F (x)) = f(y) ∀x ∈ X such that g(x) ∈ −C. As
the objective function of (P ′

c) may take some other values besides covering all the
values of the one of (Pc) as shown above, we conclude that v(Pc) ≥ v(P ′

c).
On the other hand, for (x, y) feasible to (P ′

c) we have x ∈ X and g(x) ∈ −C,
so x is feasible to (Pc). Since f is K-increasing we get v(Pc) ≤ f(F (x)) ≤ f(y).
Taking the infimum on the right-hand side after (x, y) feasible to (P ′

c) we get
v(Pc) ≤ v(P ′

c). Therefore v(Pc) = v(P ′
c). �

The problem (P ′
c) is a special case of (P ) with the variable (x, y) ∈ X × D,

the objective function A : X × D → R defined by A(x, y) = f(y), the constraint
function B : X × D → R

m × R
k defined by B(x, y) =

(
g(x), F (x) − y

)
and the

cone C ×K, which is a non-empty closed convex cone in R
m+k. We also use that

(C × K)∗ = C∗ × K∗. The Fenchel-Lagrange dual problem to (P ′
c) is

(D′
c) sup

α∈C∗,β∈K∗,

(p,s)∈R
n×R

k

{
− A∗

X×D(p, s) −
(
(α, β)T B

)∗
X×D

(−p,−s)
}
.

Let us determine the values of these conjugates. We have

A∗
X×D(p, s) = sup

x∈X,y∈D

{
pT x + sT y − f(y)

}
= f ∗

D(s) + δ∗X(p)

and
(
(α, β)T B

)∗
X×D

(−p,−s) = sup
x∈X,y∈D

{
− pT x − sT y − αT g(x) − βT (F (x) − y)

}

=
(
αT g + βT F

)∗
X

(−p) + δ∗D(β − s).

11



Pasting these formulae into the objective function of the dual problem we get

−A∗
X×D(p, s) −

(
(α, β)T B

)∗
X×D

(−p,−s) = −f ∗
D(s) − δ∗X(p)

−
(
αT g + βF

)∗
X

(−p) − δ∗D(β − s).

By the properties of the conjugate functions we have that (supremum is attained
for s = β)

sup
s∈Rk

{
− f ∗

D(s) − δ∗D(β − s)
}

= −f ∗
D(β)

and (supremum is attained for p = 0)

sup
p∈Rn

{
− δ∗X(p) −

(
αT g + βF

)∗
X

(−p)} = −
(
αT g + βT F

)∗
X

(0).

So the dual problem turns into

(Dc) sup
α∈C∗,β∈K∗

{
− f ∗

D(β) −
(
αT g + βT F

)∗
X

(0)
}

.

Applying now Theorem 16.4 in [15] we get

(
αT g + βT F

)∗
X

(0) = inf
u∈Rn

{(
βT F

)∗
X

(u) +
(
αT g

)∗
X

(−u)
}

and this leads to the following formulation of the dual problem

(Dc) sup
α∈C∗,β∈K∗,

u∈R
n

{
− f ∗

D(β) −
(
βT F

)∗
X

(u) −
(
αT g

)∗
X

(−u)
}

.

Thanks to Proposition 1 we may call (Dc) a dual problem to (Pc), too.
Now let us write what becomes the constraint qualification (CQ′) (equivalent

to (CQ) by Theorem 3) in this case. We have

(CQc) 0 ∈ B
(
ri(X × D)

)
+ ri(C × K),

equivalent to

(CQc) ∃x′ ∈ ri(X) :

{
g(x′) ∈ − ri(C),
F (x′) ∈ ri(D) − ri(K).

The strong duality statement follows accompanied by the necessary and sufficient
optimality conditions.

Theorem 5. Consider the constraint qualification (CQc) fulfilled. Then there
is strong duality between the problem (Pc) and its dual (Dc) and the latter has an
optimal solution if v(Pc) > −∞.

12



Proof. According to Theorem 1, the fulfilment of (CQc) is sufficient to guar-
antee that v(P ′

c) = v(Dc) and, if v(P ′
c) > −∞, the existence of an optimal solution

to the dual problem. Applying now Proposition 1 it follows v(Pc) = v(Dc) and
(Dc) must have an optimal solution if v(Pc) > −∞. �

Theorem 6.

(a) If the constraint qualification (CQc) is fulfilled and the primal problem (Pc)
has an optimal solution x̄, then the dual problem has an optimal solution
(ū, ᾱ, β̄) and the following optimality conditions are satisfied

(i) f ∗
D(β̄) + f(F (x̄)) = β̄T F (x̄),

(ii)
(
β̄T F

)∗
X

(ū) + β̄T F (x̄) = ūT x̄,

(iii)
(
ᾱT g

)∗
X

(−ū) + ᾱT g(x̄) = −ūT x̄,

(iv) ᾱT g(x̄) = 0.

(b) If x̄ is a feasible point to the primal problem (Pc) and (ū, ᾱ, β̄) is feasible to
the dual problem (Dc) fulfilling the optimality conditions (i)-(iv), then there
is strong duality between (Pc) and (Dc) and the mentioned feasible points
turn out to be optimal solutions of the corresponding problems.

Proof. The previous theorem yields the existence of an optimal solution
(ū, ᾱ, β̄) to the dual problem. Strong duality is also attained, i.e.

f(F (x̄)) = −f ∗
D(β̄) −

(
β̄T F

)∗
X

(ū) −
(
ᾱT g

)∗
X

(−ū),

which is equivalent to

f(F (x̄)) + f ∗
D(β̄) +

(
β̄T F

)∗
X

(ū) +
(
ᾱT g

)∗
X

(−ū) = 0.

The Fenchel-Young inequality asserts for the functions involved in the latter
equality

f(F (x̄)) + f ∗
D(β̄) ≥ β̄T F (x̄), (1)

β̄T F (x̄) +
(
β̄T F

)∗
X

(ū) ≥ ūT x̄ (2)

and
ᾱT g(x̄) +

(
ᾱT g

)∗
X

(−ū) ≥ −ūT x̄. (3)

The last four relations lead to

0 ≥ β̄T F (x̄) + ūT x̄ − β̄T F (x̄) − ūT x̄ − ᾱT g(x̄) = −ᾱT g(x̄) ≥ 0,

as ᾱ ∈ C∗ and g(x̄) ∈ −C. Therefore the inequalities above must be fulfilled
as equalities. The last one implies the optimality condition (iv), while (i) arises
from (1), (ii) from (2) and (iii) from (3).

The reverse assertion follows immediately, even without the fulfilment of
(CQc) and of any convexity assumption we made concerning the involved func-
tions and sets. �
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3.2 The unconstrained case

We find it useful to give here also the duality assertions regarding the un-
constrained problem having as objective function the postcomposition of a K-
increasing convex function to a K-convex function, where K is a non-empty
closed convex cone, problem treated within different conditions in [5]. Another
argument in favor of the inclusion of these results in our paper is that they will
be applied within the next section. So let us consider the primal problem, where
all the notations come from the preceding subsection,

(Pu) inf
x∈X

f(F (x)).

It may be obtained from (Pc) by taking g the zero function and C = {0}m. So
its Fenchel-Lagrange dual problem becomes

(Du) sup
α∈C∗,β∈K∗,

u∈R
n

{
− f ∗

D(β) −
(
βT F

)∗
X

(u) −
(
αT 0

)∗
X

(−u)
}

,

equivalent, as α ∈ C∗ is no longer necessary, to

(Du) sup
β∈K∗,u∈Rn

{
− f ∗

D(β) −
(
βT F

)∗
X

(u) − sup
x∈X

{−uT x}
}

.

It is easy to see that (supremum is attained for u = 0)

sup
u∈Rn

{
−

(
βT F

)∗
X

(u) − sup
x∈X

{−uT x}
}

= −
(
βT F

)∗
X

(0).

Thus the dual problem becomes

(Du) sup
β∈K∗

{
− f ∗

D(β) −
(
βT F

)∗
X

(0)
}

,

while the constraint qualification that is sufficient to guarantee strong duality
between this dual and the primal problem (Pu) is

(CQu) ∃x′ ∈ ri(X) : F (x′) ∈ ri(D) − ri(K).

The strong duality statement follows.

Theorem 7. Consider the constraint qualification (CQu) fulfilled. Then there
is strong duality between the problem (Pu) and its dual (Du) and the latter has
an optimal solution if v(Pu) > −∞.

The necessary and sufficient optimality conditions concerning this pair of
problems follow immediately from Theorem 6, so we skip them here.
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4 The conjugate function of a postcomposition

with a K-increasing convex function

This part of our paper is dedicated to an interesting and important application
of the duality assertions presented so far. We calculate the conjugate function of
a postcomposition of a K-convex function with a K-increasing convex function,
for K non-empty closed convex cone, and we obtain the same formula as in
some other works dealing with the same subject, [6], [10], [11] or [12]. But let
us mention that we obtain this formula under weaker conditions than known so
far or deducible from the ones given in more general contexts (for instance in
the book [10], where the authors also work in finite-dimensional spaces, the two
functions are required to be also closed).

The description of the context we consider follows now. Let K be a non-empty
closed convex cone in R

k, E a non-empty convex subset of R
n, f : R

k → R a
K-increasing convex function and F : E → R

k a K-convex function. We want to
determine the formula of the conjugate function (f ◦F )∗E as a function of f ∗ and
F ∗

E. We have for some p ∈ R
n

(f ◦ F )∗E(p) = sup
x∈E

{
pT x − f(F (x))

}
= − inf

x∈E

{
f(F (x)) − pT x

}
.

By considering the set X = {x ∈ E : F (x) ∈ dom(f)}, which is a convex set, the
last infimum becomes

inf
x∈E

{
f(F (x)) − pT x

}
= inf

x∈X

{
f(F (x)) − pT x

}
.

We are interested in writing the minimization problem above in the form of
(Pu). Consider the functions

A : dom(f) × R
n → R, A(z, y) = f(z) − pT y

and
B : X → R

k+n, B(x) = (F (x), x).

After a standard verification A turns out to be convex and (K×{0}n)-increasing,
while B is (K ×{0}n)-convex. Moreover, B(X) ⊆ F (X)×X ⊆ dom(f)×R

n. It
is not difficult to notice that

inf
x∈X

{
f(F (x)) − pT x

}
= inf

x∈X
A(B(x)).

According to Theorem 7, the values of these infima coincide with the optimal
value of the Fenchel-Lagrange dual problem to the minimization problem in the
right-hand side, let us call the latter (Pa), when the constraint qualification (CQu)
is fulfilled for B and the corresponding sets. Let us formulate the dual problem
and the constraint qualification needed here. The first one arises from (Du), being

(Da) sup
β∈K∗,γ∈Rn

{
− A∗

dom(f)×Rn(β, γ) −
(
(β, γ)T B

)∗
X

(0)
}

,
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while the constraint qualification is

(CQa) ∃x′ ∈ ri(X) : B(x′) ∈ ri(dom(f) × R
n) − ri(K × {0}n),

simplifiable to

(CQa) ∃x′ ∈ ri(X) : F (x′) ∈ ri(dom(f)) − ri(K)

or, equivalently,

(CQa) 0 ∈ F (ri(X)) − ri(dom(f)) + ri(K).

Because F (X) = F (E) ∩ dom(f) the last formula is rewritable as (cf. Theorem
3)

(CQa) 0 ∈ ri
(
F (E) ∩ dom(f) + K

)
− ri(dom(f)),

which means the same as

(CQa) ri
(
F (E) ∩ dom(f) + K

)
∩ ri(dom(f)) 6= ∅.

To determine a formulation of the dual problem that contains only the conjugates
of f and F relative to E, we have to determine the conjugate functions of A and
B regarding their domains, respectively. We have

A∗
dom(f)×Rn(β, γ) = sup

(z,y)∈dom(f)×Rn

{
βT z + γT y − A(z, y)

}

= sup
(z,y)∈dom(f)×Rn

{
βT z + γT y − f(z) + pT y

}

= sup
z∈dom(f)

{
βT z − f(z)

}
+ sup

y∈Rn

{
γT y + pT y

}

= f ∗(β) +

{
0, if γ = −p,
+∞, otherwise.

and (
(β, γ)T B

)∗
X

(0) = sup
x∈X

{
0 − βT F (x) − γT x

}
=

(
βT F

)∗
X

(−γ).

As the plus infinite value is not relevant for A∗
dom(f)×Rn in (Da) which is a max-

imization problem where this function appears with a leading minus in front of,
we take further γ = −p and the dual problem becomes

(Da) sup
β∈K∗

{
− f ∗(β) −

(
βT F

)∗
X

(p)
}
.

When the constraint qualification is satisfied, i.e. ri
(
F (E) ∩ dom(f) + K

)
∩

ri(dom(f)) 6= ∅, there is strong duality between (Pa) and (Da), so we have

(f ◦ F )∗E(p) = − inf
x∈E

{
f(F (x)) − pT x

}
= − inf

x∈X

{
f(F (x)) − pT x

}
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= − sup
β∈K∗

{
− f ∗(β) −

(
βT F

)∗
X

(p)
}

= inf
β∈K∗

{
f ∗(β) +

(
βT F

)∗
X

(p)
}
, (4)

where the minimal value of the infimum in the right-hand side being attained at
some β̄ ∈ K∗ if it is finite.

Unlike [10] or [11] no closedness assumption regarding f or F is necessary for
the validity of formula (4). Let us prove now that the condition (CQa) is weaker
than the one required in the works cited above, which is in our case

F (E) ∩ int(dom(f)) 6= ∅. (5)

Assuming (5) true let z′ belong to the both sets involved there. It follows that
int(dom(f)) 6= ∅, so ri(dom(f)) = int(dom(f)) which is an open set. We have
also

z′ ∈ F (E) ∩ int(dom(f)) ⊆ F (E) ∩ dom(f) ⊆ F (E) ∩ dom(f) + K,

as 0 ∈ K. On the other hand F (E)∩dom(f)+K = F (X)+K which is a convex
set, so it has non-empty relative interior. Take z ′′ ∈ ri

(
F (X) + K

)
.

According to Theorem 6.1 in [15], for any λ ∈ (0, 1] one has (1− λ)z ′ + λz′′ ∈
ri

(
F (X) + K

)
. As z′ ∈ int(dom(f)) which is an open set, there is a λ̄ ∈ (0, 1]

such that z̄ = (1 − λ̄)z′ + λ̄z′′ ∈ int(dom(f)) = ri(dom(f)). Therefore

z̄ ∈ ri
(
F (E) ∩ dom(f) + K

)
∩ ri(dom(f)),

i.e. (CQa) is fulfilled.
The formula of the conjugate of the postcomposition with an increasing convex

function becomes for an appropriate choice of the functions and for K = [0, +∞)
the result given in Theorem 2.5.1 by Hiriart-Urruty and Lemaréchal in [10]. As
shown above, there is no need to impose closedness for the functions and a so
strong constraint qualification as there.

We conclude this section with a concrete problem where the results given in
this paper find a good application.

Example 2. Let F : E → R be a concave function with strictly positive values,
where E is a non-empty convex subset of Rn. We want to determine the value
of the conjugate function of 1/F at some p ∈ R

n. According to the preceding
results, we write

(
1/F

)∗
E
(p) as a unconstrained composed convex problem by

taking K = (−∞, 0], which is a non-empty closed convex cone and f : R →
R with f(y) = 1/y for y ∈ (0, +∞) and +∞ otherwise. It is interesting to
notice that the concave function F is actually K-convex for this K while f is K-
increasing. Now let us see when the constrained qualification (CQa) specialized
for this problem is valid. It is in this case

(CQe) ri
(
F (E) ∩ (0, +∞) + (−∞, 0]

)
∩ ri

(
(0, +∞)

)
6= ∅,
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equivalent to

(CQe) ri
(
F (E) + (−∞, 0]

)
∩ (0, +∞) 6= ∅.

By Theorem 3 this is nothing else than

(CQe)
(
F

(
ri(E)

)
+ (−∞, 0)

)
∩ (0, +∞) 6= ∅,

which is always fulfilled since F has only strictly positive values.
So the formula (4) obtained before can be applied without any additional

assumption. We have

(
1

F

)∗

E

(p) = inf
β≤0

{
f ∗(β) + (βF )∗X(p)

}
.

As f is known, we may calculate its conjugate function which is actually

f ∗(β) = sup
y>0

{
βy − 1

y

}
=

{
−2

√−β, if β < 0,
0, if β = 0.

According to its definition X = {x ∈ E : F (x) ∈ (0, +∞)} = E and for (βF )∗X
we have

(βF )∗X(p) =

{
−β(−F )∗E

(
p

−β

)
, if β < 0,

δ∗E(p), if β = 0,

We conclude after changing the sign of β that the formula of the conjugate of
1/F is (

1

F

)∗

E

(p) = min

{
inf
β>0

{
β(−F )∗E

(
p

β

)
− 2

√
β
}

, δ∗E(p)

}
.

When the value of the conjugate is finite either it is equal to δ∗E(p) or there is a
β̄ > 0 for which the infimum in the right-hand side is attained. The value of the
infimum gives in this latter case actually the formula of the conjugate.

5 Conclusions

We have started with a convex optimization problem with a convex objective
function and cone-convex constraints. To this problem we have attached the
Fenchel-Lagrange dual problem. To achieve strong duality between these two
problems we have used a new constraint qualification due to Frenk and Kassay
([9]), weaker than the ones used so far in the literature. An equivalent formulation
of this constraint qualification is given, too. The ordinary convex programming
problem (see [15], among many others) is a special case of this problem and its
weakest constraint qualification known to us is actually the one mentioned above
specialized for this problem. The convex optimization problem that consists in
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the minimization of the postcomposition of a K-increasing convex function to a
K-convex function, where K is a non-empty closed convex cone, subject to cone-
convex constraints follows. Strong duality and optimality conditions are derived
also for this problem, as well as for its special case when the cone constraints are
removed. On this last problem is based the application we deliver. We rediscover
the formula of the conjugate of the composition of two functions, giving weaker
conditions under which it holds than in the literature. A concrete example where
our theoretical results are applicable is the calculation of the conjugate function of
1/F for any strictly positive concave function defined on a convex set F : E → R,
which ends the presentation.
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[5] Boţ, R. I., Wanka, G. (2003): Duality for composed convex functions with
applications in location theory, in: Multi-Criteria- und Fuzzy-Systeme in
Theorie und Praxis, edited by W. Habenicht, B. Scheubrein, R. Scheubrein,
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