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Abstract. We describe a supervised text classification approach based on a
greedy feature selection method, which uses a support vector machine (SVM) classi-
fier. As feature selection method we use the mutual information. This measures the
quantity of information about the categories contained by the words. To train and
test the algorithm we used patent documents from the US Patent Classification Sys-
tem. Average break-even point (BEP) for some US Classes is reported as conclusion.

Key Words. Supervised Classification, Support Vector Machines, Mutual Infor-
mation, Patent Classification

1 Introduction

Because of the increasing volume of patent (or, more generally, text) documents
in the last years, there is a growing interest in developing methods that generate
good results in the management (i.e. classify and retrieve) of some huge amount
of information. Text categorization techniques are used, for example, to classify
new documents or to find interesting information. Since the use of human trained
professionals by the construction of adequate classifiers is a time-consuming and costly
process, it is advantageous to build artificial classifiers that learn from examples. Some
advantages of these so-called inductive learning techniques are that they are easy to
construct, to up-date and on the other hand that they depend only on information
which is easy to be provided (e.g. items that are in or out the class). The standard
approach to text categorization consists in the use of a document representation
in a word-based input space, i.e. as a vector in some high-dimensional Euclidian
space, where each dimension corresponds to a word and then in the training of a
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classification algorithm in a supervised learning manner. Since the early days of
the text classification ([9]), the theory and the practice advanced considerably and
some strong learning methods have been produced ([8], [12]). Although there are a
lot of sophisticated document representation techniques ([1], [10], [11]), the simple
and natural word-based representation, known as bag-of-words (BOW), remains very
popular. Indeed, the best known multi-class classification results for the well-known
Reuters-21578 data set (available at [17]) have been obtained by using the BOW
representation ([2], [5], [7]).

In this paper we describe some results obtained from experiments using some
classes of patent documents from the US-Patent Classification System ([18]). We use
a BOW representation in a (high dimensional) Euclidian vector space. Only binary
feature values are used. In a preprocessing phase, the digits, the non-letter characters
and the one-character-words were eliminated. We performed a stopwords elimination
using the SMART-stopwords list ([14]) and also applied the Porter stemmer ([15]), in
order to reduce the dimension of the working dictionary. For further dimensionality
reduction, we used the greedy mutual information feature selection [13]. For learning
and classifying we used a Support Vector Machine classifier (SV M lights, [16]). The
goal of our work is to analyze the classification power of the SVM algorithm com-
bined with mutual information feature selection, applied to the special case of patent
documents, a combination of methods which, to the best of our knowledge, has not
been tested until now on patent documents.

The paper is structured as follows. The next section contains a description of the
mutual information feature selection method (section 2.1) and of the Support Vector
Machines classifier (section 2.2), finalized with the description of the combination of
both methods in a supervised learning algorithm (section 2.3). In the third section we
make a description of the data used for training and tests, including the preprocessing
steps (section 3.1). We also introduce some indices to quantify the performance of
the classification (section 3.2). Finally we present some concrete results of our tests
(section 3.3) and put together some conclusions of our work and some further remarks.

2 Methods and tools

In this section we present the mutual information feature selection method, the Sup-
port Vector Machines (SVM) algorithm and finally a supervised learning algorithm
based on a combination of the two methods mentioned above.

2.1 Feature selection via mutual information

Mutual information, also known as cross entropy or information gain is a widely
used information theoretical measure for the stochastic dependency of two random
variables.
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Let W be the set of words in our training documents (dictionary) and C the set
of categories in which the documents are classified. Let w ∈ W be a word and c ∈ C
a category (they can be seen as random variables). Then the mutual information
between the word w and the category c can be defined as (cf. [13])

I(w, c) = log
P (w ∧ c)

P (w) × P (c)
, (1)

where P (w) and P (c) are the a-priori probabilities of the word w, and category
c, to be selected from W and C, respectively, P (w ∧ c) is the join distribution of
the two variables and log is the natural logarithm. One can see that the mutual
information has a natural value of 0 if the two variables are (statistically) independent
(i.e. P (w ∧ c) = P (w) × P (c)).

If one considers the co-occurrence documents-words matrices (i.e. the 0-1 matrix
having a number of lines equal the number of documents and a number of columns
equal the number of words in the dictionary, where position (i, j) will be 1 if the
document and the word co-occur (i.e. the word occurs in the document) and 0
otherwise) and documents-categories matrices (obtained in an analogous way), by
taking into consideration the following notations

cw is the number of times the word and the category co-occur,

w \ c is the number of times w occurs without c,

c \ w is the number of times c occurs without w and

N is the total number of training documents,

one can estimate the mutual information as (cf. [13])

I(w, c) ≈ log
cw × N

(cw + (c \ w)) × (cw + (w \ c))
. (2)

In other words, I(w, c) measures the quantity of information the word w contains
about the category c.

If one takes into consideration the big amount of (patent) documents available
and their increasing complexity, it is clear that the documents-words co-occurrence
matrix can have a very high dimension. This matrix is usually also very sparse. In
order to improve the classification quality (via noise reduction) and to reduce the
computational complexity, a lot of dimensionality reduction methods are proposed in
the literature. Despite the existence of sophisticated methods (e.g. [6]), many authors
have considered simple and greedy approaches ([13]). In [5], as in our experiments,
the mutual information was used for feature selection. For each category the mutual
information contained by each word is computed and for further use only the words
corresponding to the largest K values are selected.
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A characteristic of mutual information is that its value is strongly influenced by
the marginal probability P (w|c) of the words, as it can be seen below

I(w, c) = log
P (w ∧ c)

P (w) × P (c)

= log P (w ∧ c) − log P (w) − log P (c)

= log P (w|c) − log P (w).

This means that for words with an equal conditional probability P (w|c) rare words
will have higher score than the common ones. But this is not necessary a weakness,
as [13] claims, because exactly these ”rare words” (i.e. words which do not appear
in so many documents) could be very useful when one wants to make more than a
rough classification.

2.2 Support Vector Machines

The SVM classifiers have been first introduced in [3] and they are based on the
Structural Risk Minimization Principle [12] widely used in the computation learning
theory. The basic idea of this principle is to find a classifier for which one can
guarantee the lowest true error (the probability that the classifier will misclassify an
unseen and randomly selected test example). This is done in [12] by controlling the
complexity of the classifiers space (known as VC-dimension).

We consider the problem of learning pattern recognition from examples. Let be
the following training data set

S = {(x1, y1), . . . , (xl, yl)} ⊆ R
n × {1, ...,m}.

If m = 2 we speak about a binary classification problem. We will treat in what follows
only this case, because any m-class classification problem can be reduced to m binary
classification problems (each class will be separated from the rest). We will denote
in this case the two classes with +1 and −1 (the set of positive, respectively negative
examples).

For simplicity, let us also assume that the data are linearly separable, i.e. there
exists a hyperplane

H = {x ∈ R
n| < w, x > +b = 0}, w ∈ R

n, b ∈ R

which correctly classifies the training data. Here < w, x > denotes wT x, the scalar
product between w and x. A clear formulation of the problem is: Find an optimal
hyperplane H, such that the margin γ of the training set is maximal (i.e. H is the
maximal margin hyperplane).

This formulation of the problem is known as linear hard-margin SVM ([8]). The
margin γ is the distance from the hyperplane to the closest training example (see
Figure 1).
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Fig 1. Linear Support Vector Machine

For each separable training set there exists exactly one hyperplane with a maxi-
mum margin ([4]). The closest training points to the hyperplane are called support
vectors.

Because the problem is linearly separable, there exist w ∈ R
n and b ∈ R such that

yi(< w, xi > +b) > 0,∀i = 1, . . . , l. Rescaling w and b such that the point(s) closest
to the hyperplane satisfy | < w, xi > +b| = 1, we obtain a pair (w, b) with

yi(< w, xi > +b) ≥ 1,∀i = 1, . . . , l.

One can prove the following statement (see [4])

Theorem 1. Given a linearly separable training set

S = {(x1, y1), . . . , (xl, yl)},

the hyperplane H = {x ∈ R
n| < w, x > +b = 0}, where (w, b) solves the optimization

problem

(P ) min
(w,b)

1

2
< w,w >

s.t. yi(< w, xi > +b) ≥ 1, i = 1, . . . , l,

releases the maximal margin hyperplane with γ = 1
||w||

.

One can solve this quadratic optimization problem with the tools of duality theory.
Using the Lagrange function

L(w, b, α) =
1

2
< w,w > −

l
∑

i=1

αi[yi(< w, xi > +b) − 1],

where α = (α1, . . . αl), αi ≥ 0, i = 1, . . . , l, are the Lagrange multipliers, one can
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obtain the following dual to the optimization problem (P ) (cf. [4])

(D) max
α

l
∑

i=1

αi −
1

2

l
∑

i,j=1

yiyjαiαj < xi, xj >

s.t.
l

∑

i=1

yiαi = 0,

αi ≥ 0, i = 1, . . . , l.

The following theorem can be formulated (cf. [4]).

Theorem 2. Consider a linearly separable training set

S = {(x1, y1), . . . , (xl, yl)}

and suppose the parameters α∗ solve the quadratic optimization problem (D). Then

the vector w∗ =
l

∑

i=1

yiα
∗
i xi provides the maximal margin hyperplane with γ = 1

||w∗||
.

Because b does not appear in the dual problem, its value must be found by making
use of the primal constraints. It follows that

b∗ = −
1

2

(

max
(yi=−1)

< w∗, xi > + min
(yi=1)

< w∗, xi >

)

.

Using the Karush-Kuhn-Tucker optimality conditions (see for example [4]), one can
see that the optimal solutions (w∗, b∗) and α∗ must also satisfy

α∗
i [yi(< w∗, xi > +b∗) − 1] = 0, ∀i = 1, . . . , l.

From here one can see that (cf. [4]) for all support vectors, which are points with
yi(< w∗, xi > +b∗) = 1, i = 1, . . . , l, the corresponding α∗

i may be non-zero. All the
other parameters αi are 0.

The optimal hyperplane can be expressed in terms of these elements as

h(x, α∗, b∗) =
l

∑

i=1

yiα
∗
i < xi, x > +b∗

=
∑

i∈SV

yiα
∗
i < xi, x > +b∗,

where SV = {i : i ∈ {1, . . . , l}, xiissupport vector} Another consequence of the
KKT-optimality conditions is that for j ∈ SV we have

yjh(xj, α
∗, b∗) = yj(

∑

i∈SV

yiα
∗
i < xi, x > +b∗) = 1
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and therefore

< w∗, w∗ > =
l

∑

i,j=1

yiyjα
∗
i α

∗
j < xi, xj >

=
∑

j∈SV

α∗
jyj

∑

i∈SV

yiα
∗
i < xi, xj >

=
∑

i∈SV

α∗
i (1 − yib

∗)

=
∑

i∈SV

α∗
i .

One problem with the simple formulation above is that it fails when the training data
are not linearly separable and this is often the case in real world problems. Therefore
it might make sense to allow some errors on the training data. In [3] a solution to
this problem was suggested. It is called ”soft margin” SVM. By introducing the slack
variables ξi, i = 1, . . . , l, and the cost factor C, one can rewrite the primal problem
(P ) as follows

(P ′) min
(w,b,ξ)

1

2
< w,w > +C

l
∑

i=1

ξi

s.t. yi(< w, xi > +b) ≥ 1 − ξi, i = 1, . . . , l,

ξi > 0, i = 1, . . . , l.

If a training example lies on the wrong side of the hyperplane, the corresponding ξi

is greater than 1. The factor C establishes a connection between the training error
and the model complexity. A large value of C causes a behaviour similar to that of
hard-margin SVM and a small one increases the number of allowed training errors.

Using similar paths, one can find the following dual

(D′) max
α

l
∑

i=1

αi −
1

2

l
∑

i,j=1

yiyjαiαj < xi, xj >

s.t.
l

∑

i=1

yiαi = 0,

0 ≤ αi ≤ C, i = 1, . . . , l.

The training examples with αi > 0 are also called support vectors, those with αi = C
are called bounded support vectors and for 0 < αi < C we have unbounded support
vectors.

A very useful generalization of the SVM is the so-called non-linear (or kernel-
based) SVM. The basic idea is that the non-linear separable input data are mapped
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via a non-linear function (a so-called kernel function) into a higher dimensional feature
space, where one uses a linear SVM classifier. Details and examples of kernel functions
can be found for instance in [8] and [4].

2.3 The Mutual Information Feature Selection Algorithm

Our goal is to present a supervised classification method, which will be able, after
the training phase, to classify new (patent) documents into one or several of the
given classes. Based on an idea presented in [2], we developed and experimented
a supervised classification program that combines the mutual information feature
selection method with the classification power of SVM. In what follows, we shortly
present the structure of the algorithm.

First, our program deals with the multi-class classification problem, this means
that each document can be classified in one or more classes. In a supervised method,
the program has two parts: a training one, in which one learns a classification model
based on given labeled documents and a so-called classification (or test) part, in which
new documents can be classified using the learned model.

The training part of the algorithm takes as input a bag-of-words (BOW) repre-
sentation of the documents (i.e. each document is represented as a vector of the
contained words, related to a given dictionary) and also a list of classes in which each
document is classified (more details about the representation of the input data will
come in the next section). The number K of features to be selected is also given.

Even when we work with a small number of documents (about a few hundreds),
the size of the corresponding dictionary could be very high. In order to avoid un-
necessary long computation time and in the same time to diminish the noise (and so
to increase the classification accuracy), we have done a greedy mutual information
feature selection, using the method presented in section 2.1. This means that, for
each given class and for all the words in the dictionary we computed the mutual in-
formation using the relation (2) and then we selected for further computations only
the K words for which I(w, c) takes the greatest values. In this way we obtain for
each class a much smaller ”active” dictionary. We project then the whole set of train-
ing documents onto this reduced dictionary. Because of the sparseness of the initial
document representation, the loss of information during this process is minimal. We
train then an SVM classifier (SV M lights) in this small dimensional vector space in
order to obtain a classification model for each class.

MI-SVM based training

Input

di = (Bi, Ci), i = 1, . . . , N , characterizing the document i, where

Bi is a BOW representation of di
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Ci is the set of categories in which di appears,

Ci = {ci1, . . . , cil} and Dtrain = {d1, . . . , dN}

K is the number of selected features (the same for each category)

Output

{M1, . . . Ml} set of binary classifiers

{W1, . . . ,Wl} set of selected features for each class

Loop

initialize the dictionary

for each class ci ∈ C = {c1, . . . , cl} and each w ∈ W

Posi := ∅, Negi := ∅ (set of positive and negative examples)

compute I(w, ci)

sort the words in W according to I(w, ci)

extract the K top words Wi = {wi
1, . . . , w

i
K}

for each dj = (Bj, Cj) ∈ Dtrain

represent d on the basis of the set Wi

let Project(d) := (Bj ∩ Wi, Cj)

if ci ∈ Cj

add Project(dj) to Posi

else add Project(dj) to Negi

end if

end for dj

train SV M lights to separate Posi and Negi and obtain Mi

end for c

One can observe that our l-class classification problem was divided into l binary
classification problems, where each class is separated from the others. This is also
the way in which SV M lights works.

The classification (or test) part takes as input a BOW representation of one (or
more) document(s), project this onto the set of selected features Wi = {wi

1, . . . , w
i
K},

i = 1, . . . , l, and, using the classifiers Mi, . . . ,Ml, predicts a class (or more) in which
this document could be classified. It could also happen that a document is nowhere
classified. Here is the classification part of SV M lights that is used.

MI-SVM based classification

Input
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d = (Bj, Cj) a test document

M = {M1, . . . ,Ml} set of binary classifiers

{W1, . . . ,Wl} set of selected features for each category

Output

V = (v1, . . . , vl) the values of the separating hyperplane on the test docu-
ment, where

vi > 0 means d ∈ ci

vi < 0 means d /∈ ci

vi = 0 is undecided

Loop

for each Mi ∈ M

determine Project(d) = (Bj ∩ Wi, Cj)

run Mi on Project(d) to obtain vi

end for

In the next section we will present details about the training and test data, some
results and their interpretation.

3 Applications

The USPCS (United States Patent Classification System) is a well-known patents
and trademarks collection. The basis of this library can be found in 1871, when the
”Patent and Trademarks Depository Library Program” was started, with the goal of
helping people to get informed about the already existent patents and about the laws
which protect the invention (and the inventors). Since 1977 the size of this library
has grown at least by a factor of four. Due to this continuously increasing number of
patent documents, the process of finding a patent document or ordering (classifying)
a new one is getting more difficult. Nowadays, millions of patent documents are
hierarchically classified on the basis of their claims in about 450 US-classes and 150000
subclasses (see [18]).

As a consequence of the increasing number of patents, grows also the interest in
finding a reasonable automatic classification algorithm. Here, reasonable is used in the
sense that it approximates well the present USPCS, offers new and better classification
possibilities and is easy to update. With this goal we try to use the supervised MI-
SVM classification method (see section 2.3) to learn a classification model (on the
basis of some labeled examples) and then to classify new patent documents.
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3.1 Data used and preprocessing steps

For our work we used the following US classes (left-US class number, right-class name)

036 Boots, shoes and leggings
175 Boring and penetrating the earth
219 Electric heating
307 Electrical transmission or interconnected systems
318 Motive power systems
323 Power supply or regulation systems
329 Demodulators
330 Amplifiers
331 Oscillators
332 Modulators
338 Electrical resistors
343 Radio wave antenna
361 Electrical systems and devices
372 Coherent light generators
379 Telephonic communications
703 Structural design, modelling, simulation and emulation
704 Speech signal processing, linguistics, language translation etc.
706 Artificial intelligence
707 Data base, file management or data structures.

Details about all the patents in these classes and about the present classification
can be found, for example, in [18]. Some preprocessing have been done by IP Century
AG (www.ipcentury.de), which also provided our data.

In order to perform our tests, we first did some other preprocessing, in order to
eliminate the redundant information. For each US Class we constructed some binary
documents - words (DW) and documents - classes (DC) matrices. Let us first describe
the construction of the DW matrix.

The DW matrix is a 0-1 matrix, having a number of lines equal to the number
of documents and a number of columns equal to the number of words in the cor-
responding dictionary. The words in the dictionaries are from the claims, abstract
and description of each patent. The position (i, j) will be 1 if the document and the
word co-occur (i.e. the word occurs in the document) and 0 otherwise. The following
transformation have been done to the dictionaries:

1. One-letter words, digits and ” ”, ”-”, ”’” characters were eliminated, for ex-
ample ”h2o” became ”ho”, ”clark’s” became ”clarks” and so on.

2. Stopwords were eliminated, using the SMART-stoplist ([14]), which contains
571 stopwords, like ”all”, ”and”, ”or”, etc.

3. The Porter stemmer ([15]) was applied on the remaining dictionary and, for
instance, instead of ”computer”, ”compute”, ”computing” we kept only ”comput”

11



(the stem of the word). After this preprocessing, for the class 323 for example we
reduced the dictionary from 20025 words to 12148.

The DC matrix is also a 0-1 matrix, which contains the documents-classes co-
occurrence. Each document could be classified in subclasses of one US main-class
and in the same time in subclasses of other US-class. We take into consideration
once only the subclasses of one class. As an example, we had the patent US05281906
classified in the subclasses 323/313, 323/314, 323/907 and 327/537 (in our data for the
class 323). In this case we took in consideration only the first 3 subclasses. Moreover,
one can see that 323/314 is a sub-subclass of 323/313 and in this case we kept only
the ”higher” class (parent) (323/313). In an analogous manner, we eliminated some
sub-subclasses, keeping only the highest level subclasses (they were always two or
three level subclasses). For US Class 323 for example, we had initially 174 subclasses
of different levels and after this processing, we got exactly 22 subclasses of two- and
three- level, who have no direct connection with each other.

Since our method is a supervised one, we had to split the DW and DC matrices
in training and test parts. The DC ”test part” (which contains the labels of the
documents used for test) was used to evaluate the results. The training documents
were selected such that for each subclass at least one document for each class will be
selected. In Table 1 one can see the dimensions of the matrices we worked with.

US class Nr. trains Nr. tests Nr. subclasses Nr. words

036 4437 196 24 12561
175 5654 229 63 12866
219 12721 3162 18 33136
307 3476 1125 26 15077
318 9460 543 60 22082
323 3503 421 22 12148
329 545 185 7 5621
330 4590 1507 50 14702
331 3738 517 60 13403
332 506 181 8 5808
338 1991 251 46 11384
343 5601 768 3 17135
361 16468 3329 15 33372
372 7567 1081 22 25621
379 11240 1585 48 26584
703 2439 343 6 21552
704 5340 726 4 24036
706 1893 362 10 20943
707 9357 1860 9 36394

Table 1. The dimensions of the matrices
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3.2 Performance measure

For measuring the performance of a supervised learning algorithm on a multi-class
classification problem, it is customary to use the break-even point (BEP) measure
which, for a binary categorization problem, is the arithmetic average of precision
(P ) and recall (R). Let us consider the problem of classifying documents into l
classes c1, . . . , cl, using classifiers M1, . . . ,Ml, where the classifier Mi is responsible
to discriminate between the class ci and the rest of the classes. We considered a
multi-class classification problem, where each document can be classified in many
classes.

If one considers for each class ci the following numbers

f++ = number of documents classified in ci and which should be in ci,

f+− = number of documents classified out of ci but which should be in ci,

f−+ = the number of documents classified in ci, but which should not be there,

one can compute the so-called precision and the recall with the formulas

Pi =
f++

f++ + f+− + 1
and Ri =

f++

f++ + f−+ + 1
.

One can introduce

BEPi =
Pi + Ri

2
, for each class ci.

We also defined the partial average BEP as

BEPav part = (BEP1 + · · · + BEPl)/l0

where BEPi denote the break-even point corresponding to the class i and l0 is the
number of classes for which BEP 6= 0. We will report the partial average BEP and
the best BEP for some US classes and also some particular cases.

3.3 Results and discussions

Table 2 summarizes the multi-class classification results obtained with the MI-SVM
method on some US patent classes (where Time1 is the training time, measured in
seconds, and Time2 is the test time). The programs were run on a Intel(R) Pentium
4 CPU, 1.60 GHz, 1GB Ram, under Linux.

A natural question that may arise is why have we introduced the BEPav part

measure?
The distribution of the data in the subclasses of the USPCS is not uniform in

the sense that there are subclasses which contain large numbers of documents and
there are others which are ”almost” empty. For instance, the documents from US
343-Radio wave antenna are grouped (after preprocessing) into three subclasses, as
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follows (please note that a document may appear in more than one class): 343/700R
contains 6241 documents, 343/DIG1 contains only 5 and 343/DIG2 contains 83. Be-
cause of this big negative bias for the second subclass, our program was not able to
classify any document there. That is why there are only two of three subclasses for
which BEP 6= 0 (see the last column of the table). In the same time, we recognized
that there is only a small number of documents spread in such classes (in our ex-
ample, at most five of 6369). It is not a big loss when we do not take these classes
(and the corresponding documents) into consideration. The BEPpart av measure this
average BEP only for classes in which the number of documents is comparable (and
in conclusion the BEP is not 0).

Class K Time1 Time2 BEPav part Best BEP Cls. BEP>0
036 7000 - - 0.476 0.875 7
175 7000 - - 0.472 0.79 19
219 8000 1670 340 0.612 0.918 9
307 7000 523 154 0.516 0.896 8
318 8000 2972 893 0.5 0.5 1
323 5000 331 37 0.558 0.79 6
329 1000 5 2 0.480 0.805 6
330 7000 1598 552 0.46 0.895 14
331 7000 1291 166 0.556 0.77 16
332 1000 5 2 0.523 0.65 5
338 5000 338 102 0.533 0.79 8
343 7000 163 21 0.64 0.98 2
361 10000 3030 648 0.735 0.9 9
372 10000 1424 178 0.57 0.87 10
379 10000 4559 566 0.53 0.775 22
703 9000 259 36 0.508 0.76 6
704 9000 158 46 0.716 0.975 3
706 9000 157 27 0.615 0.88 6
707 10000 733 124 0.683 0.81 3

Table 2. Classification results with MI-SVM

We used SV M lights in its standard variant (i.e. all the parameters have standard
values, see [16]). We had also made tests with different values for K, between 500 and
20000 (depending on the size of the dictionary). Good results are produced with K
between 5000 and 15000. We also varied the number of training documents, learned
a model with fewer or more examples and the number of test documents. We have
also tried to classify non-patent documents.

The best partial average BEP was 0.735 and a best particular BEP value for one
class was 0.98. We have not reached in general the values reported in [5] or in [2]
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(there the tests have not been done for patent documents and the parameters of SVM
were tuned).

One can say that when the distribution of the data in classes is (more) equilibrate,
the average BEP is also better (and so the classification quality). But the algorithm is
also sensitive with respect to the choice of K and the training set. The same number
of documents but different ones in the training set produce different results. One
must take into consideration also the quality of the documents-words matrices and
of the vocabulary. We could not test how the program distinguishes between two or
more US main classes because we had not enough store capacity to build the input
matrices. This should be done in the future using computer systems having more
store capacity and computing power (e.g. parallel computing systems).

Table 3 contains some particular examples. After the training part was done, we
took some particular patent documents and tried to classify them on the basis of the
learned model, using our program.

Patent number Should be classified in Was classified in
US0406457261 036/083 036/25R 036/34R 036/083 036/25R
US05075983 036/045 036/083 036/045 036/083
US05287639 036/083 036/083
US06092307 036/012 036/25R 036/083
US06167640 036/012 036/083 036/043 036/083
US04694831 036/043 036/083 036/140 036/043 036/083 036/140
US06360830 175/082 175/085 175/052 175/085
US05381867 175/085 -
US06223839 175/092 175/207 175/092 175/207
US04828053 175/073 175/092 175/073 175/092
US04844180 175/092 175/320 175/092

Table 3. classification of particular documents

The patent number and the classes names are taken from [18]. To find out also
the name of the patent and other details see also [18]. We can see that although there
are cases when misclassifications (line 5 for example) appear (this means differences
between our results and the hand-made classification from the USPCS), there are still
a lot of cases where the results of our program are remarkable.

So we may conclude that the MI-SVM combination is a promising method for the
classification of patent documents. Although our average BEP does not reach the
values reported until now, there are still particular classes with better results (see US
343 with a best BEP of 0.98, the best one reported until now).
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