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CONSTANT MINKOWSKIAN WIDTH IN TERMS
OF BOUNDARY CUTS*

Gennadiy Averkov and Aladar Heppes

Abstract

Let K be a body of constant width in a Minkowski space (i.e., a finite di-
mensional real Banach space) with unit ball B. Suppose that B and K are
strictly convex and smooth. Then any manifold My, homeomorphic to (d — 2)-
dimensional sphere and lying in the boundary bd K of K splits bd K into two
compact manifolds M; and M, such that M; or M, has the same Minkowskian
diameter as Mj. Moreover, the above property of bodies having constant Min-
kowskian width is even characteristic in the class of strictly convex and smooth
bodies with at least two Minkowskian diametral chords.
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1 Preliminaries

Let E? denote the d-dimensional Euclidean space, d > 2. We use the notations o,
(.,.), and |.] for the origin, scalar product and norm in E¢?, respectively. The unit
ball and sphere in E¢ are denoted by By and Sg, respectively. The linear, affine, and
convex hulls are abbreviated by lin, aff, and conv, while int, relint, cl, and bd stand
for interior, relative interior, closure and boundary, respectively. The orthogonal
projection of a point p € E? and a set X C E? onto an affine space L C E? is denoted
by p|L and X|L, respectively.

A set K C E¢ is said to be a convex body in E? if it is convex, compact and has
non-empty interior, cf. [BF74] or [Web94]. The support function of K is defined by
hi(u) := max {{z,u) : z € K}, where u ranges over E%. The set S := conv(H; U H,),
where H,, H, C E? are parallel hyperplanes, is called a strip in E*. Then H; and
H, are called the bounding hyperplanes of S. The strip S is called a K-strip if both
H, # H, support a convex body K. Two boundary points p; and p, of K are said to
be antipodal points generated by a K-strip S if they lie in the two corresponding
hyperplanes H; and H,, respectively. The chord [p;,p] is then called an affine
diameter of K generated by S.

A finite dimensional real Banach space is usually called a Minkowski space. Ba-
sic information on the theory of Minkowski spaces can be found in the monograph
[Tho96] and in the surveys [MSWO01] and [MS]. Given a convex body B C E¢ cen-
tered at the origin, we denote by AM¢(B) the Minkowski space with unit ball B. The
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norm, one-dimensional measure, and diameter (of a set) in M%(B) are denoted by
.||z, us(.) and diamp(. ), respectively. The set a- B+p, witha >0 and p € M%(B)
is called the Minkowskian ball of radius « centered at p.

A vector u € M?(B) \ {0} is said to be orthogonal to a hyperplane H in M4(B)
if ||u + v||p > |lulls for any v € Hy, where Ho denotes the translate of H pass-
ing through the origin. This type of planar Minkowskian orthogonality is usually
called Birkhoff orthogonality. A Minkowskian diametral chord of a convex body
K C M%B) is a chord of K whose Minkowskian length is equal to the Minkow-
skian diameter of K. Trivially, every Minkowskian diametral chord of K is neces-
sarily an affine diameter of K. Furthermore, every Minkowskian diametral chord
is orthogonal (with respect to A%(B)) to the supporting hyperplanes of any K-strip
generating that chord, cf. [Ave03]. It is not hard to prove that for a segment
1 C M%B) and a linear space L C M%(B) we have ug(I) > ppiz(I|L), with equality
if and only if I is orthogonal in M?(B) to some hyperplane whose Euclidean normal
liesin L.

Let K C E¢ be a strictly convex and smooth body. Then the map n : bd K — Sg
associating with a with a boundary point = of K the outward Euclidean unit normal
of K at z is called the spherical image map of K, cf. [Sch93]. It is known that this
map is a homeomorphism. Obviously, a chord [z1, 3], 71,72 € bd K, of K is an affine
diameter of K if and only if n(z,) = —n(z2).

The Minkowskian width of a strip S C E? with bounding hyperplanes H, and
H, is the minimal Minkowskian distance occurring between points z; € H, and
£, € H,. A convex body K C M%(B) is said to be of constant width ) > 0in M%(B)
(or of constant Minkowskian width )) if the Minkowskian width of any K-strip
is equal to \. The articles [CG83], [HM93] and [MS] survey the known results
on bodies of constant width. The following characterization of bodies of constant
width in Minkowski planes has been proven in [AM, Theorem 7]. It extends the
corresponding result of Heppes [Hep59] for the Euclidean plane, see also [Ave] for
further extensions and [GK68], [GK70], where one of the implication of Theorem 1
was proven.

Theorem 1. Let K be a convex body in a Minkowski plane M>*(B). Then K is of
constant width in M2(B) if and only if every chord I of K splits K into two compact,
convex parts K; and K, such that the Minkowskian diameter of K, or K coincides
with the Minkowskian length of I. 0

2 The result

The following topological lemma is weaker than Lemma 3. However, this lemma is
needed for the proof of Lemma 3.

Lemma 2. Let K C E? be a smooth and strictly convex body, and My C M :=bd K
be a manifold homeomorphic to (d — 2)-dimensional sphere. Let M and M, denote
the two compact sets into which M is split by M. Suppose that for any i € {1,2} the
set M; contains a pair of points p; and g; which are antipodal to each other. Then My
also contains a pair of points antipodal to each other.



Proof. Since the spherical image map of K is a homeomorphism which transforms
antipodal points of K to antipodal points of Bg and vice versa, it is sufficient to
prove the lemma for the case K = Bg. Assume that K = Bg. Theng; = —p; (i = 1,2).
If {p;, —pi} C M, for some i € {1, 2}, then the assertion is trivial. Thus, we suppose
additionally that for any i € {1,2} we have {p;, —p;} € M. Further on, we consider
separately the following two cases.

Case 1: For any i € {1,2} one point of the set {p;, —p;} belongs to M, and the
other one not. For definiteness we suppose that p;,p, € My, and —p,, —ps & M.
Let us consider the path p(t), ¢t € [0,1], in M, with p(0) = p, and p(1) = p,. Since
—p(0) € M; and —p(1) € M,, we get that for some ¢, € (0, 1) the point —p(¢,) lies in
M. This yields the needed conclusion, since p(t,) also lies in M.

Case 2: For some i € {1, 2} both points p; and —p; do not belong to M,. Suppose,
for definiteness, that 1 = 2, i.e., both p, and —p, do not belong to M;. Therefore
we have M; C M \ {p.} and —M; C M \ {p;}. It turns out that M; is not strictly
contained in — M, as well as — M is not strictly contained in M;. Indeed, if we sup-
pose, for instance, that M; G —M;, then it follows that —M; ¢ —(—M;) = M,
a contradiction. Further on, we notice that M; N (—M;) # 0, since p; belongs
to both M; and —M;. It is well known that taking off one point from a (d — 1)-
dimensional sphere, we obtain a set homeomorphic to E¢!. Thus we can consider
some homeomorphism F : M \ {p,} — E%! (e.g., F can be a stereographic pro-
Jection). Trivially, F(M;) and F(—M;) are homeomorphic to a (d — 1)-dimensional
ball, the intersection F(M;) N F(—M,) is non-empty, F'(M;) is not strictly contained
in F(—M,), and F(—M,) is not strictly contained in F'(M;). From this it follows
that bd F(M;) N bd F(=M;) # 0. In view of the relations bd F(M;) = F(M,) and
bd F(—M;) = F(—M,), the latter is equivalent to F(Mp) N F(—M,) # 0. Obviously,
for any point p; € F~1(F(M,) N F(—M,)) we have p, € My and —p, € M. Thus the
proof is complete. 0

We say that a convex body K C AM%(B) has Property (P) if any manifold M,
which lies in bd K and is homeomorphic to a (d — 2)-dimensional sphere splits bd K
into two compact manifolds M; and M, such that at least one of them has the same
Minkowskian diameter as M,.

Now let us formulate a stronger lemma.

Lemma 8. Let M%(B) be a strictly convex and smooth Minkowski space, and K C
M?(B) be a smooth body of constant Minkowskian width. Then K has Property (P).

Proof. We assume that My, C bd K is an arbitrary manifold homeomorphic to a
(d — 2)-dimensional sphere and denote by M; and M, the compact manifolds in
which bd K is split by M,.

Let us denote diamg(K) by A and diampg(M;) by A;, where i € {0, 1,2}. Obviously,
A1 or )\, is equal to A. If both \; and )\, are equal to A, the assertion follows from
Lemma 2. Thus we suppose that one of the values \; and ),, say ), is strictly
smaller than A and show that then A\ = A\;. Let I := [p1,q1], ;,q1 € My, be a
Minkowskian diametral chord of M;.

We prove by contradiction that {p,,q;} N My # 0. Suppose the contrary, i.e.,
{p1,¢1} € M; \ M,. Let I] be the affine diameter of K parallel to I;. We introduce a
two-dimensional affine space A := aff(I; UI]). Obviously, for any chord I{ of K being
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parallel to I; and lying in A strictly between I; and I; we have pg(Iy) > pp(fi).
Further on, if I} is sufficiently close to I;, then even the endpoints of I}’ lie in M, a
contradiction to ug(l1) = A;.

Thus {p;,q1} N M, # 0. For definiteness we now suppose that p; belongs to Mo,
and we show that diamg(M,) > diamp(M;). If ¢; € My, then the assertion is trivial.
Therefore we assume that ¢; € M; \ M. Since pp(;) = A1, we get that I; is orthog-
onal in M%(B) to the supporting hyperplane of K at ;. Let u; € Sg be the outward
Euclidean normal of K at ¢;. Let us choose an affine diameter I, := [ps,qa], of K
with p, = p; and ¢, € bd K. Since \; < )\, we have ¢; € M; \ M. Let u, € Sg denote
the outward Euclidean normal of a supporting hyperplane which bounds some K-
strip generating I,. We introduce the two-dimensional linear space L := lin{uy, us}.
Let us denote the projections of B, K, I;, p; and ¢; onto L by By, K, IF, pF and
gF, respectively. Clearly, K, is of constant Minkowskian width X in M?(By), the
points pF, gF belong to relbd K, and up, (I) = Ai. Let ¢, be the boundary arc of the
two-dimensional convex body K which connects ¢f with ¢ and does not contain
p¥(= p%). Then there exists a curve ¢ C bd K with ¢|L = c;. Obviously, the endpoints
of c are ¢, and g.. Since ¢; € M; and ¢, € M,, we obtain that there exists some point
q € ¢ which also belongs to M. Let ¢* := ¢|L, I* := [p},¢"] and I := [p;, ¢]. Summa-
rizing, we see that the chords I’ and I* of K have the point pf(= pf) in common,
I lies between If and IF, ug, (IF) = M\ and ug, (IF) = Ay = A. Consequently, in view
of Theorem 1, we get that up, (IX) > up, (IF) = \;. Therefore, up(I) > pp, (I*) > A1
The latter implies that diampg(M;) < diampg(Mp). The converse inequality follows
from the inclusion My C M;. Thus, diampg(M;) = diamp(Mpy). O

Figure 1

Lemma 4. Let M%(B) be an arbitrary strictly convex and smooth Minkowski space.
Let K C M%B) be a strictly convex and smooth body which is not of Minkowskian
constant width and has at least two Minkowskian diametral chords. Then K does
not possess Property (P).



Proof. Let n be the spherical image map of the body K. Assume z,,z, € Sg are two
distinct points such that ||n~1(z;) — n~!(—z;)||p = diamp(K), i = 1,2. Since K is not
of constant width in AM%(B), there exists some set U homeomorphic to a (d — 1)-
dimensional open ball such that for any z € U we have ||n"'(z) — n7l(~z)||z <
diamp(K). Additionally, we assume that U N (—U) = 0.

We choose a unit circle C in Sg with {—z;,2:} C C,UNC # @ and {—z,, 22} NC =
0. Let v be an arbitrary point from C N U. In the sequel B., € > 0, stands for
the Euclidean ball ¢ - Bg. Let us choose an € > 0 such that v + B. C U. The set
C\int((—u+ B:)U(u+ Be)) consists of two connected parts C; and C, with C; = —C.
We define S; to be the union of the sets S?, i € {1,2, 3}, given by

Sll = (Cl + Be/2) N Sk,
Si? (CQ+B€/3) N Sg,
S? == (u+ B.)NSg.

We require additionally that ¢ is chosen to be small enough so that the condition
{—z2,22} N'S; = 0 holds. Then we put S, := cl(Sg \ S1), So = S1 N S, and define
the manifolds M;, ¢ € {0,1,2}, by M; := n~1(S;) (see Fig. 2 depicting Sy and Sz
for the case d = 3). Clearly, for i € {1,2} the manifold M; has the same Minkow-
skian diameter as K| since M; contains the points n™!(%z;). It remains to show that
diamp(M,) < diamp(K). Let p, ¢ be points from M, such that ||p — q||p = diamp(Mp).
If p is not antipodal to ¢ with respect to K, then ||p — ¢||z < diamp(K). Other-
wise, we have p = n™(zo), ¢ = n™}(—=) for some z, from Sy, N (~S;). Let us show
that in this case Sy N (—S) is a subset of U N (-U). Obviously, Sy is a subset of

o = S§USEU S, where S§, i € {1,2,3}, is the boundary of S with respect to the
topology on Sg. It is sufficient to show that the intersection S§ N (—S}) is contained
in U U (=U). The above intersection can be represented as the union of the sets
Sin (—S3) 4,5 € {1,2,3}. But if i = j or {1,5} = {1,2}, then Si N (—SI) is empty.
Thus, S; N (—S;) is the union of the sets +(S N (—S%)), i € {1,2}. But the latter
sets are contained in U U (—U). Hence, S; N (—S}) is also contained in U U (—U). The
latter implies that zo € UU(—U). Consequently, ||n(zo) ~n ' (—z0)|lz = |p— 4|z =
diamp(My) < diamp(K) = diamp(M;) = diamp(M,), which means that K does not
possess Property (P). O

Now we can formulate the announced characterization of constant Minkow-
skian width.

Theorem 5. Let M%(B) be a smooth and strictly convex Minkowski space. Then
property (P) characterizes bodies of constant Minkowskian width within the class

of smooth and strictly convex bodies having at least two Minkowskian diametral
chords. O

The above theorem follows directly from Lemmas 3 and 4.

It remains open, whether Lemma 4 can be proven for a convex body K with
precisely one Minkowskian diametral chord. If so, then our main theorem can be
extended to a characterization of constant Minkowskian width within all strictly
convex and smooth bodies. Another open problem is whether one can get rid of the
smoothness and strict convexity restrictions in Theorem 5.
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