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Abstract

The notions of illumination and visibility of convex bodies are well known in com-
binatorial and computational geometry. With the help of related closure operators we
present a unified approach to both these notions, studying also the complete lattice
structure of a more general framework of closure operators. Moreover, precisely the
extreme elements of this complete lattice control illumination and visibility, respec-
tively.
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§ 1 Introduction

The notion of illumination of a convex body K in R™ can be considered as the starting
point for various interesting problems and as a useful tool in combinatorial geometry (cf.
Chapter VI and VII in [2] and the survey [8]). This notion was independently introduced
by V. Boltyanski [1] and H. Hadwiger [5], motivated by the famous (and still unsettled)
question how many light sources are needed to illuminate the whole boundary of K. The
conjectured upper bound 2", attained when K is an n-dimensional parallelotope, is verified
only for special types of convex bodies, e.g. for all centrally symmetric convex bodies in
R® (as shown by M. Lassak in [7]), or for convex bodies in R® whose supporting cones
at singular points are not too acute (proved by B. Weibach in [15]). Variations of the
Boltyanski-Hadwiger notion of illumination were considered in [9] and [16].

A modified type of illumination, called wisibility, was introduced by F. A. Valentine [14],
see also [4], [3], and again the survey [8]. Visibility problems play an essential role in
computational geometry, e.g. in connection with art gallery questions and the watchman
route problem, cf. [12] and [13]. Valentine’s notion of visibility can be seen as a weakening
of the above mentioned notion of illumination; so already n + 1 points are sufficient to see
the whole boundary of a convex body K in R".

In this paper we want to present a unified approach to both these notions in terms of
closure operators, which themselves are tailored to convex sets. In case of visibility, the
corresponding closure operator is even new.



In Section 2 (Theorem 2.4) we show already basic connections between the notions of illumi-
nation and visibility in view of closure operators, and in Section 3 the new closure operator
of the visibility notion is introduced and discussed. In Section 4 we give a detailed study
of the lattice structure of a large family of closure operators, containing those related to
illumination and visibility as extreme elements. It should be noticed that this extension
to a whole family of closure operators is not only of theoretical interest: One might apply
this more general framework by considering configurations of light sources having different
intensities (Remark 4.5). The final Section 5 presents analogous investigations for parallel
illumination of convex bodies, surprisingly showing that in this case we cannot have an
approach via closure operators (at least not in a canonical way).

Finally we shortly mention two of the main motivations for our investigations presented
here. First it is our hope that an extended framework of tools and methods might help
to attack more successfully certain longstanding open problems from the combinatorial
geometry of convex bodies, such as the Boltyanski-Hadwiger illumination problem (also
known as the Gohberg-Markus-Hadwiger covering problem asking for the minimum number
of smaller homothets of K sufficient to cover that convex body). Second, our more general
approach seems to be suitable for investigating also extended illumination and visibility
questions which occur already in the literature. For example, one might no longer restrict
to translation classes of convex bodies (with respect to fixed configurations of light sources),
but even consider congruence classes. For the case of illumination, this more general point
of view was proposed by B. Weibach [16].

§ 2 Illumination described in terms of a closure oper-
ator

For two points a,b € R™ with a # b, n > 1, ’let
(21) ab:={a+A-(b—a)|0<A<1}

denote the closed line segment between a and b, while
(2.2) s(a,b):=={a+X-(b—a)| >0}

1s written for the ray with initial point a and passing through b.

Assume that K is a convez body, i.e., a compact, convex set with interior points in R™. Due
to H. Hadwiger [5] we say that a boundary point z of K is illuminated by a point z € R*\ K
if

(2.3) (s(z,z)\zzZ)N int K £ 0.

(We note that the analogous notion for parallel illumination was introduced by V. Boltyanski
[1], see also [2], Chapter VI, for a historical survey, and [8].) A point set A C R” \ K is
sald to illuminate a subset B of the boundary 0K of K if every z € B is illuminated by at



least one element a € A. If A illuminates the whole boundary 0K of K, we say also that A
illuminates the body K.

To describe illumination more generally, namely in terms of closure operators, we define for

every subset M of R™ and its complement E = R™\ M the operator oy, : P(E) — P(E) by
(24) om(4) :=AU{b€.E\A|3a€A:%ﬂM=(b,s(a,b)ﬂM7€®}.

Thus o1/(A) \ A consists of those points of E \ A which lie in front of M relative to some

point a € A.

We have the following proposition which was already proved in [10], see Theorem 2.5 there.

Proposition 2.1: Assume that M C R™ is convex. Then the operator oy - P(E) — P(E),

with E := R™\ M, is a closure operator, i.e.,

(HO) o is increasing: A C E implies A C o(A),

(H1) o is monotone: ~ A; C A, C E implies 0(A4;) C o(A,),

(H2) o is idempotent: A C E implies 0(o(A)) = o(A).

Note that the convexity of M is only used to verify (H2); the axioms (HO) and (H1) hold

for all subsets M of R™.

In the remaining part of this paper, assume again that K is a convex body in R™. Then the
intertor Ko = int K of K is also convex; thus, for E := R" \ K and Ej := R"\ K, we get
closure operators

0:=0k : P(E) = P(E), 0o:=0k,: P(Ey) — P(Ep).

The next result shows that g is precisely adapted to the illumination problem.

Proposition 2.2: For a subset A of R*\ K and a subset B of 0K = K\ Ky the following
statements are equivalent:

(i) A illuminates B.
(i) B C ao(A).

Proof: By definition, (i) is equivalent to the statement that for every b € B there exists
some a € A with

(23a) (s(a,b)\ab) NKy#0.
We verify that this relation holds if and only if

(24a) abNKo=0 and s(a,b)N Ky +#D.



Clearly, (2.4 a) implies (2.3 a). Vice versa, if (2.3 a) holds, we get ab N K, = @, because
b ¢ Ko and Kj is convex. Thus (2.3 a) and (2.4 a) are equivalent, whence, by (2.4), the
equivalence of (i) and (ii) follows. O

Still in this section we want to prove an extension of Proposition 2.2 in the case B = K. To
this end, we consider already now the concept of visibility as introduced by F. A. Valentine
in [14], see also [4] and [3]. Namely, a point z € R™\ K sees the point z € 0K if

(25) TTNK = {z}.

A point set A C R™\ K sees a subset B of QK if every b € B is seen from at least one point
a € A. If A sees 0K, we say also that A sees (the whole of) K or that K is visible from A.

Remark 2.3:

(i) For y € int K and z; € 0K there does not exist some further boundary point z, €
0K\ {z,} with z, € T17: If 25 € 777 \ {21, y} is arbitrary and r > 0 satisfies

(2.6) B(y,r)={2€R":|ly—z||<r} C int K,

where || - || means the Euclidean norm, then we get also

B(il?g Mr) C int K
"y — | -

by the convexity of K. In particular, this means

Zg \ {z1,9} C int K.

(ii) From (i) we conclude at once: A subset A of E = R™\ K, which illuminates a subset
B of 0K, also sees B. O
Now we can prove the following

Theorem 2.4: For every subset S of E the following statements are equivalent:

(i) S illuminates OK.
(ii) OK C ao(S).

(i) For every z € OK there exists some § > 0 such that B(z,5) N OK is illuminated by
some z € S.

(iv) For every z € OK there exists some § > 0 such that B(z,d) N OK is seen by some
z€eS.

(v) There exists some open subset U of R™ with

KCUCKUo(S).



(vi) There exists some open subset U of R™ with

KgUgK()UO'()(S)

Proof:

(i) © (ii) is Proposition 2.2 for B = K.

(iii) = (i) is trivial. (iii) = (iv) is clear by Remark 2.3 (ii).

(vi) = (v) follows from the relation Ky U ao(S) C Ko U (0(S) UK) = K U a(9).

(i) = (iil): Assume z € 8K, and choose z € S and y € K, with z € 77. Suppose r > 0
satisfies B(y,r) C Ko. Then for every z’' € 0K with ||z — «|| < H;:ZH -7 there exists some
y' € B(y,r) with 2’ € s(z,y). Thus 2’ is illuminated by z.

(iv) = (il): Assume z € 0K, and choose § > 0 and z € S such that B(z, §) N OK
is seen from z. It suffices to prove that s(z,z) N Ky # #. Otherwise we would have
s(z,2) N K = s(z,2) N 0K = {z}, because z is the unique point in s(z,z) N K which is
seen from z. Now assume that y € K is arbitrary, and for n > 0 put Wy =2 +7-(z—2),
see Fig. 1. If n is small enough, we get &’ € B(z,§) N 9K for some 2’ € 7wy \ {y}. On the
other hand, we have Ty N 2z’ # 0. That means, 2’ is not seen from 2, a contradiction to
z' € B(z,0) NIK.

Figure 1

(i) = (vi): For every z € 9K, choose some y =y, € K and some z = z, € S with z € 7.
Furthermore, choose r = r, > 0 with B(y,r) C Ko as well as w = w, € 2% \ {z,z} such
that for

o= = Hz_w” .
2=l

we have B(w,r’) C E, see Fig. 2.



Then we have B(w,r') C 0o({z}). Therefore, the set U, = conv (B(w,r")U B(y, 7)) is an
open subset of the convex set

(2.7) KoUoo({z}) = conv (KoU{z}) .

(For a proof of the elementary relation (2.7) see [10], Proposition 2.6 i).) Now put

v=xlJJ U.=K|J U U-

€K €K

U is an open subset of R® with K C U C KU g¢(S).

Figure 2

Figure 3



(vi) = (ii): (vi) implies directly that 9K = K \ Ko C 00(S).

(v) = (vi): We prove that, if U C R" is open and satisfies (v), then U satisfies (vi), too.
Namely, assume that z € U \ K,. We must prove that z € 0¢(S). By (v) we have = € 0K
or z € o(5). (In Fig. 3 we have z; € 9K and z, € o(S).) Assume that y € K is arbitrary.
Then there exists some w € U \ (K U {z}) with z € WY, because U is open. (v) implies
w € o(S); thus there exists some z’ € K with w € 22’ for some suitable z € S. By Remark
2.3 (i) we have yz’ \ {2’} C Ko, and hence z € oo({2}) C 0¢(9). a

§ 3 Visibility described in terms of a closure operator

In contrast to Proposition 2.2, the closure operator o = ok : P(E) — P(E) is not precisely
adapted to the visibility problem, because the boundary points of the convex body K C R*
do not belong to £ = R™\ K. Thus they cannot lie in o (A) for a subset A C E. However,
for any closed subset M of R we define an operator &, : PR™\int M) — P(R"\ int M)
which in case M = K precisely controls visibility: For closed M C R*, A C R" \ M and
BCOM =M\ int M put

(31) 6M(AUB):=oy(A)UBU{z € OM |ZZ N M = {z} for some z € A}.
By the definitions it is clear that for all 4 C F := R* \ int M we have
(32) om(A)=AUu{be R\ A|Ja€ A, dz€dM:beaz,azN M = {z}}.

By (2.5) we have the following trivial
Proposition 3.1: For a subset A of R" \ K and a subset B of 0K = K\ Ky the following
statements are equivalent:

(i) A sees B.

(i) B Cok(A).
To prove that &), is a closure operator in case M equals the convex body K, we show first
the following
Lemma 3.2: For a boundary point x € 0K of the convex body K and a subset A of R™ \K
the following statements are equivalent:

(i) There ezists some z € A with 7N K = {z}.

(ii) There exists some 2' € ox(A) with 7z N K = {z}.

Proof:

(i) = (ii): This implication is trivial in view of A C ok (A).



(ii) = (i): Choose some z € A with 2’ € ox({2}) and assume, without loss of generality,
that 2/ # z. Then there exists some 2’ € 8K with 2’ € 22’ and za’ N K = {z'}. We prove
that 72 N K = {z}. Otherwise there would exist some y € ZZ N K with y # z. Since K is
convex, we get even yz' C K. On the other hand, we have yr' N (%\ {x}) # () and thus
also K N (2’z \ {z}) # 0, which contradicts (ii). 0O

Figure 4

In Fig. 4 one sees that Lemma 3.2 is not a trivial corollary of Proposition 2.1. Now we can
prove

Theorem 3.3: The operator 63 : P(R™\ int M) — P(R™\ int M), where M C R™ is
closed, satisfies
(HO) 6 is increasing: A CR™\ int M implies A C da(A).

(H1) 6a is monotone: Ay C A2 C R"\ int M implies Gr(A1) C Ga(As).
If M equals a convez body K C R™, then we have also
(H2) 6y is idempotent: A CR™\ int M implies 6rp(Gm(A)) = Gm(A).

Thus Gk is a closure operator for every convez body K in R".

Proof: By (3.2), (H0) and (H1) are trivial for arbitrary closed M C R™. To prove (H2) for
M = K, assume that A C R\ K and B C 8K. Then we obtain by (3.1), Lemma 3.2, and
the fact that ok is a closure operator:

6k (6x(AUB)) = 6k (ox(A)UBU{z € 0K |ZZ N K = {z} for some z € A})
= ok (cx(A)) UBU{z € 8K |zz N K = {z} for some z € ox(A)}
= ox(A)UBU{z € 0K |zZ N K = {xz} for some z € A}
= 6x(AUB). O

We can now also prove some converse of Theorem 3.3. This, however, will not only be an
analogue, but also a consequence of Theorem 2.9 in [10].

Proposition 3.4: Assume that M C R™ is compact and that R™ \ M is connected. If the
operator 63 : P(R™\ int M) — P(R™\ int M) is a closure operator, then M is convex.



Proof: We verify that o : P(R" \ M) — P(R"\ M) is a closure operator. Assume that
A CR"\ M. Since 6, satisfies (H2), we get

However, oa(om(A)) is contained in the open set R™ \ M, which does not intersect OM.
This means that o (0a(A)) = op(A). Thus oy is a closure operator, whence M is convex
by [10], Theorem 2.9. O

§ 4 Lattices of closure operators adapted to illumina-
tion and visibility

In this section we want to study families of closure operators o : P(Ey) — P(Fjp) including
0o and 6 where, now as before, Ey = R"™\ int K for the given convex body K in R™. First
we repeat the following definition from [10] (see Definition 2.2 there).

Definition 4.1: For an arbitrary set P, an operator o : P(P) — P(P) is called a visibility
operator if o is increasing, monotone, and the following wvisibility condition holds:

(V) For every subset A of P and every p € o(A) there exists some a € A with p € o({a}).

Remark 4.2:

i)' Note that a visibility operator is not necessarily a closure operator, because idempo-
tence is not required.

ii) By definition, the operator oy : P(R™ \ M) — P(R™\ M) as defined in (2.4) is a
visibility operator for every subset M of R™. In particular, og : P(Ey) — P(Ey) is a.
visibility operator. Moreover, for closed M C R" the operator & : P(R™ \ int M) —
P(R™ \ int M) as defined in (3.1) is also a visibility operator.

(iti) If o : P(P) — P(P) is an arbitrary visibility operator and (A;);¢; is a family of subsets
of P, then monotony and the visibility condition imply at once

(41) o (U A,~> =Jo(a). 0

el i€l

Before we introduce new closure operators o : P(Ep) — P(Ep), we want to prove two
elementary relations between oy and 6.

Proposition 4.3: For every subset A of E, one has
(42)  0o(A) CoK(A).

Proof: Assume that b € 0o(A4) \ A. If b € 9K, then A illuminates b by Proposition 2.2.
Thus, by Remark 2.3 (ii), A also sees b, whence b € 6x(A) by Proposition 3.1. Now assume -

9



that b ¢ 0K, that means, b ¢ K. Choose some a € A with abN Ky = 0 and s(a, b)N Ko # 0.
Thus there exists some p € s(a,b) \ ab with p € Ko € K. Since K is convex and b ¢ K, we
must have abN K = @ and thus b € ox(A) C 6k (A). O

Lemma 4.4: For arbitrary subsets A, Q of Ey one has
(4.3) 00 (6x(A)NQ) C 0o(A) U (6x(A)NQ) -

Proof: Assume that g € 6x(A) N Q. Since oy is a visibility operator, it suffices to prove
that

(4.4)  oo({g}) C 0o(A) U (Gx(A)NQ) .

Suppose that p € oo({g}). To prove that we have p € go(4) U (6x(A) N Q), we may
assume that ¢ ¢ A and that p # g¢; otherwise the assertion is trivial. q¢ € 6x(A)\ A
implies that there exists some a € A and some z; € 9K with az, N K = {z;} and q €
aZ,. Since p € oo({q}), there exists some z» € Ko with p € qT,. Thus we get also
p € conv {g,73} C conv {a,z1,2}, whence there exists some z3 € 7122 C K with
p € axzs. If z3 = z;, then we have p,q € aT; and thus p € oo({a}) as claimed, because
apN K, C az, N Ko =0 and s(a,p) N Ko = s(q,p) N Ko # 0. If, on the other hand, z3 # I,
then Remark 2.3 (i) implies z3 € s(a,p) N Ko. Since p ¢ Ko and Kj is convex, we have

ap N Ko = 0 and thus p € oo({a}) O
Z3
z
P K
a Z1
q
Figure 5

Now for every subset @ of Ey we define the operator 0% P(Ey) — P(Eo) by
(4.5)  0%(A) = 0o(A) U (6x(A) NQ) = 6x(A) N (00(A) U Q)
Remark 4.5: The second equation in (4.5) holds by Proposition 4.3. Clearly, one has
(45a) % =00,
(45b) of° =6k,
and for all A,Q C E, we have
(4.6) oo(A) C oR(A) Cox(A).

10



It is trivial that all operators 02 for Q C F are visibility operators. Before we prove that
these are also idempotent and thus closure operators, we would like to mention that they are
not only theoretically interesting because of encompassing the closure operators o and Ok,
adapted to illumination and visibility, respectively. They may also be of practical interest
for the following reason: Assume that S C Ey consists of light sources of weak intensity.
Those boundary points of K which lie in Q@ = 0¢(S) should additionally be at least seen
by some further light source a € A, while the other elements of 8K should, even harsher,
be illuminated by some a € A. If, on the other hand, S consists of light sources of very
strong intensity, then, in view of blinding effects, it might be interesting to consider 02 for

QIZ Eo\Uo(S). J
Theorem 4.6: For every subset Q of Ey, the operator ag 15 a closure operator.

Proof: It remains to prove that 02 is idempotent. By (4.5), by the facts that crg is a
visibility operator and that oy and 0k are closure operators as well as by Proposition 4.3
and Lemma 4.4 we get for A C E, that

of (o2(4) = 0% (0o(4) U (6x(4) N Q)
= o7 (00(A)) UoR (6x(4) N Q)
= 00(00(A)) U(k(a0(4)) N Q)
Uao (5% (A) N Q) U (6x(6x(4) N Q) N Q)
C oo(A) U (6k(6x(4)NQ)
U (00(A4) U (6%(4) N Q)) U (6x 6k (A)) N Q)
= 0o(A) U (6 (4) N Q)
= og2(A). O

For arbitrary closure operators o, " : P(Ey) — P(E,) we write 0 < o if o(A) C o/(A)
holds for all A C E,. Now we consider the complete lattice ®y of all closure operators
o : P(Ey) - P(E,) with 0y < o < 6. Clearly, (99, <) is an ordered set with 0o as its

smallest and o, := 6 as its largest element. Moreover, (®o, <) is indeed a complete lattice,
as the following arguments will demonstrate.

For every family of closure operators (0i)ier in ®y we have
(4.7a) inf{o;lieI} =0
®o
with

(47b) o'(A) = ﬂai(A) for all A C E,

el

and

(4.7¢c) sup{oilie I} =i£1f{a €®ylo; <o forall ieI}.
L) [¢]
(See also [11] as well as [6].)
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Next we study complete sublattices (@, <) of (®g, <). That means, one has
(4.82a) {00,01} S ®C P
as well as
(4.8 b) i%f{aih' eI} =i<£10f{ai|i el},
(4.8c) sup{oi|iel}=sup{oi|i€l}
) @0
for every family of closure operators (0i)icr in .
Put
(4.9) @ﬂ=%%@§ﬂ&.
We have
(4.9 a) 0'0=0'?{€¢1 , (71=6K=0Ib;° €d,.
Moreover, for any family (Q;):cr of subsets of Ey we get by (4.5):
(4.9 b) mf{ lZEI} 1nf{ |’L€I}—0’K
with

49b) Q={)Q

iel
as well as

(4.9 ¢) sup{o |z€I}—sup{a |i€I}=ag

with

Now (4.6), (4.9 a), (4.9 b), and (4.9 c) imply at once the following

Proposition 4.7: (®;1,<) is a Boolean lattice which, in addition, is a complete sublattice

Of (q)o, S)

12



For a fixed subset P of Ey put

(4102) V(P):={og(A)|AC B},

)

(4.10b) V(P):={E,\oE(A)|AC Eo}
(410c) ®(P) = {ag Qe V(P)} ,
(0 ¥(P)={oR|qe Vv(p)} .

A motivation for these definitions can be taken from Remark 4.5, where the corresponding
terms occured already in case P = ). Since ok is a closure operator as well as a visibility
operator, V(P) and V'(P) are closed with respect to arbitrary intersections and unions.
Moreover, we have

(411) {0, Eo} = {0%(0), 0% (Eo)} C V(P)NV/(P),
and therefore
(411a)  {oo,01} C ®(P)N&'(P).

Thus we obtain the following

Theorem 4.8: For every subset P of E,, the ordered sets (®(P), <) and (¥'(P),<) are
complete sublattices of ($,, <) and thus also of (®o, <).

It should be noticed that the closure operators 02 for @ C Ey are not necessarily pairwise
distinct. More precisely, we have the following

Proposition 4.9: For Q,Q’' C E, the following statements are equivalent:

(i) o = oF .
(i) QAQ' C 8K, and every g € QAQ' is contained in a (uniquely determined) supporting
hyperplane H of K such that there exists some § = 8q > 0 with B(q,0) N H C K.

Proof:

(i) = (ii): First assume that QAQ' ¢ 0K, say g € @\ @ holds for some g € E = R® \ K.
Then there exists some b € 0K with gbNK = {b} such that the line containing ¢ and b does
not intersect Ko. Now choose some a € E\ {g} with q € ab. Then we have also 2bA K — {b}
and s(a,q) N Ko = . This means that ¢ € 6x({a}) \ 0o({a}) and thus ¢ € 0%({a}) but
q ¢ UIQ(/({G,}), which contradicts (i). Now suppose that ¢ € Q \ @ C 9K, and choose any
supporting hyperplane H to K with ¢ € H. Assume that q does not lie in the relative
interior of HN K in H. Then there exists some a € H \{q} with agN K = {q}, and the line

13



containing a and g does not intersect Ky. This means that ¢ € 6x({a}) \ oo({a}), whence
again q € 02({a}) but ¢ ¢ o ({a}), contradicting (i).

(ii) = (i): We must prove that for given ¢ € QAQ' and all A C E, the relation g €
oo(A) U (6k(A) N Q) holds if and only if ¢ € oo(A) U (6x(A) NQ'). This amounts to prove
that for all @ € E, we have ¢ € oo({a}) whenever q € 6x({a}). If a € E = R"\ K, our
assumption in (ii) implies that the ray s(a, q) meets Ko whenever agN K = {q} as claimed,
because then a cannot lie in the supporting hyperplane H of K with ¢ € H. If, however,
a € OK, we have q € 6x({a}) only for a = g, in which case we also have g € o({a}). U

Remark 4.10: Proposition 4.9 implies the following observations:

(i) Two closure operators a%, ogl are different whenever Q # Q' and QUQ' C E = R"\ K.
ii) If K is a ball, then all of the closure operators UfQ{, Q C E,, are pairwise different.
iii) If K is a polytope, then not all of the closure operators UIQ<, Q C Ey, are pairwise

different. O

At the end of this section we want to look at further lattices contained in (®;, <). For fixed
sets P, C Ep and P, € V(P;) put

(412) ®(P,Py) = {ag 10 e V(P),QC Pg} ={ced(P)|o <ol

Clearly, ®( P, P,) is a lattice. More precisely, for any family of closure operators in ®( Py, Py),
infimum and supremum mean the same as in ®o, ®; and ®(P,). However, ®(P1, P) is in
general not a sublattice of these lattices, because o need not lie in ®(Py, P).

With the intention to consider the Gohberg-Markus-Hadwiger covering conjecture (cf. Chap-
ter VI of [2]) it might be interesting to consider ®(8, S) for subsets § C E = R"\ K with
0K C oo(S). If S illuminates K, Theorem 2.4 shows that for every z € OK there exists
an open set W C R™ with z € W such that W N K is illuminated by some a € S. Thus
there exists a finite subset Sp of S which illuminates the compact set K. For the minimal
subsets Sy of S illuminating OK — with respect to inclusion or cardinality — the lattice

(4.12a) @ (0,00(S0)) = {0% | Q = go(A) C 0o(Sn) for some A C Eo}

might be of importance. Note that this lattice is not isomorphic to the Boolean lattice
(P(S,), C), because for s1, 55 € Sp with s1 # s3 we have in general ao({s1}) Noo({s2}) # 0.

§ 5 Illumination by directions

Throughout this section assume that we have 0 € int K for a convex body K in R™. Due to
[1], a point = € 8K is said to be illuminated by the direction u € snl.= {z e R": ||z|| = 1}

14



If the ray s(z,z +u) with initial point z and direction u meets the interior of X Therefore
it seems natural to consider the operator 7y : P(S™1) — P(S™1) given by

(6.1) 7(A) := {beS”“HHueA,H:cEBK:ﬁ'x=b,s(z,m+u)ﬂintl(#0},

which is adapted to the problem of illumination by directions. Note that 0 € int K implies
that for every b € 5™~ there exists a unique element z € K with mlmx = b. However, 7 is

not increasing, since for u € S"~! and z € 9K with W;—”x = u we have s(z,z4+u)NK = {z}

and thus s(z,z 4+ u) Nint K = §. This means u ¢ 7o({u}). Therefore let us look at the
modified operator 7, : P(S"~1) — P(S™"1) given by

(5.2) m(A) := {beS"‘llEiueA,EixeaK:L“-xzb,s(m,m—u)ﬂintK#(Z)}.

||z

Clearly, we have 7;(A) = To(—A) for AC 8™ 1. Now 0 € int K implies that 7 is increasing.
Thus it is also evident that 7 is a visibility operator which is in some sense analogous to oy
by relating u € S"~! to points € R™ for which ||z|| is large and m ‘T =U.

However, 7, is in general not a closure operator though oy is. If, for instance, K is a ball with
0 as its center, then we have 7y ({u}) = {v € 5" 1| cos( 4 (u, v)) > 0} for all u € $™1. Thus
we get 71(71({u})) = S"71\ {~u} and 7y (ry (11({u}))) = §"~, whence 7y is not idempotent.
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