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Abstract. We study integral operators on (−1, 1) with kernels k(x, t) which may
have weak singularities in (x, t) with x ∈ N1, t ∈ N2, or x = t, where N1, N2 are
sets of measure zero. It is shown that such operators map weighted L∞–spaces
into certain weighted spaces of smooth functions, where the degree of smoothness
is as higher as smoother the kernel k(x, t) as a function in x. The spaces of smooth
function are generalizations of the Ditzian-Totik spaces which are defined in terms
of the errors of best weighted uniform approximation by algebraic polynomials.

1 Introduction

In all of what follows we consider an integral operator K on (−1, 1),

(Kf)(x) =
∫ 1

−1
k(x, t) f(t) dt , x ∈ (−1, 1) ,

where the kernel function k(x, t) is defined and continuous on [−1, 1]2 \N , N a
set of measure zero. More precisely, we suppose that there are continuous weight
functions

v : D(v) → (0,∞) and w : D(w) → (0,∞)

with D(v), D(w) ⊆ [−1, 1] and meas D(v) = meas D(w) = 2, such that

g(x, t) = (x− t) v(x) k(x, t) w(t) ∈ C
(
[−1, 1]2

)
and g(t, t) = 0. (1.1)

This means that k(x, t) is defined and continuous on [D(v)×D(w)]\{(x, t) : x = t}
and that g(x, t) can be continuously extended onto [−1, 1]2, where the extension
vanishes on the diagonal {x = t} of [−1, 1]2. We will show that, under some
additional conditions on v, w and k (namely, g(x, t) has to be smooth enough in
x and g(x0, t) = 0 for all zeros x0 of v),

K ∈ L
(
L∞u ,Cγ,δ

uvw

)
for certain weights u with

1
uw

∈ L1(−1, 1) , (1.2)
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where Cγ,δ
uvw can be replaced by Cγ,δ

v if even v(x) k(x, t) w(t) is continuous on
[−1, 1]2 and smooth enough in x. (By L(X,Y) we denote the space of all bounded
linear operators from X into Y.) Here, L∞u = {f : fu ∈ L∞(−1, 1)} (endowed
with ‖f‖u = ‖fu‖∞) and Cγ,δ

v belongs to a certain scale of subspaces of

Cv = {f : D(v) → C : fv ∈ C[−1, 1]} (‖f‖Cv = ‖f‖v = ‖fv‖∞)

which are compactly embedded into Cv. For the precise definition we need the
weighted polynomial best approximation errors of f ∈ Cv,

Ev
n(f) := inf

Pn∈Πn∩Cv

‖f − Pn‖v , Πn = span {xk : k = 0, . . . , n− 1}

(Ev
0 (f) := ‖f‖v). Now, for γ > 0 and δ ∈ R,

Cγ,δ
v :=

{
f ∈ Cv : ‖f‖v,γ,δ = sup

n=0,1,...
Ev

n(f) (n + 1)γ lnδ(n + 2) < ∞
}

.

In the case v ≡ 1 we write shortly Cγ,δ and ‖ . ‖γ,δ instead of Cγ,δ
v and ‖ . ‖v,γ,δ.

Let us give some properties of these spaces (see [2] or [1] for the proofs).

Proposition 1.1 Let γ > 0, δ ∈ R be fixed. The following assertions hold true.

(i) Cγ,δ
v is a Banach spaces which is compactly embedded into Cv.

(ii) If γ > r > 0 and s ∈ R or γ = r and s > δ, then Cγ,δ
v is compactly embedded

into Cr,s
v .

(iii) f ∈ Cv belongs to the closure of
⋃
n

Πn in Cγ,δ
v iff lim

n→∞
Ev

n(f) nγ lnδ n = 0.

The spaces Cγ,δ
v play an important role in the numerical analysis of Cauchy

singular integral equations on (−1, 1), if these equations are studied in weighted
spaces of continuous functions. In case of Jacobi-weights v it is well-known that
mapping properties of the type (1.2) are a powerful tool in the study of Cv–
convergence of polynomial approximation methods for Cauchy singular integral
equations on (−1, 1) (see, e.g., [7]). Recently, the known mapping properties of
Cauchy singular integral operators in spaces Cγ,δ

v with Jacobi-weight v (see [9])
were generalized to the case of power weights v (see [8]). It is the aim of the
author to develop a concept which allows to study weighted uniform convergence
of polynomial approximation methods for Cauchy singular integral equations on
(−1, 1) those right hand sides belong to some space Cγ,δ

v with power weight v.
(Thus, the right hand sides may have singularities inside (−1, 1).) The purpose
of this paper is to go the next step in this direction, which is the generalization
of results of the type (1.2), which are known for Jacobi-weights u and v (see [7]),
to the case of power weights or even more general weights u and v.

Before we start, we should explain why we do not use weighted Hölder spaces
to describe the mapping properties of K, although there exist nice continuity re-
sults for Cauchy singular integral operators in such spaces (see [6, Section 9.10],
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[4], and [5]). There are several reasons: First of all, for the investigation of poly-
nomial approximation methods for singular integral equations it is natural to
use polynomial approximation spaces instead of Hölder-Zygmund spaces which
cannot be described equivalently in terms of polynomial approximation errors
if spaces on an open curve are considered. Secondly, the mapping properties
of Cauchy singular integral operators in the spaces Cγ,δ

v are similar to that in
weighted Hölder-Zygmund spaces and can be formulated even under less assump-
tions on the weight v (see [8]). Last but not least, we will see that it is natural
that the images of a weakly singular integral operator K on (−1, 1) lie in some
space Cγ,δ

v , since usually its kernel k(x, t) can be approximated by polynomials
of degree less than n in x, which leads to approximations of K by Πn–valued
operators Kn.

Of course, all these reasons are only theoretically of interest as long as we do
not have practical criteria to check whether a function f ∈ Cv belongs to Cγ,δ

v

or not. Recently, such criteria have been found for the case when v ∈ C[−1, 1]
is a generalized Jacobi-weight. We only mention that, in this case, the elements
of Cγ,δ

v can be described equivalently with the help of certain weighted Ditzian-
Totik type moduli of smoothness. The interested reader can find the details in
[3]. Here we will only give the following result which shows that there is some
connection between the spaces Cγ,δ

v and Hölder spaces

Hα[−1, 1] =

{
f ∈ C[−1, 1] : ‖f‖Hα = sup

x 6=y

|f(x)− f(y)|
|x− y|α

< ∞

}
, α > 0 .

Proposition 1.2 ([8], Lemma 2.3, Corollary 2.5) Let v(x) =
M∏

j=1
|x − xj |βj

(M ∈ N ∪ {0}) with xj ∈ [−1, 1] and βj > 0. (Set v = 1 if M = 0.)

(i) If f ∈ Cγ,δ
v , then (fv)(xj) = 0 for all j and fv ∈ Hα[−1, 1] for some

α = α(γ, δ) > 0, where ‖fv‖Hα ≤ c ‖f‖v,γ,δ with c independent of f .

(ii) If fv ∈ Hα[−1, 1] and (fv)(xj) = 0 for all j, then f ∈ Cγ,0
v for some

γ = γ(α) > 0, where ‖f‖v,γ,0 ≤ c ‖fv‖Hα with c independent of f .

The paper is divided in two parts. In Section 2 we study the case of operators
K with kernels k(x, t) which may only have singularities on axis-parallel lines,
but not on the diagonal {x = t}. In Section 3 we treat operators those kernels
k(x, t) satisfy (1.1).

2 Kernels with singularities on axis-parallel lines

First we consider the case of a kernel k ∈ C(D(v) × D(w)). More precisely,
instead of (1.1) we suppose that even

v(x) k(x, t) w(t) ∈ C
(
[−1, 1]2

)
. (2.1)
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Thus, if v has zeros in x = xi and w has zeros in t = tj , then k(x, t) may have
singularities on the lines {xi} × [−1, 1] and [−1, 1]× {tj}.

Let K(X,Y) denote the set of all compact linear operators from X into Y.

Theorem 2.1 If (2.1) is satisfied, then, for all

u : D(w) → (0,∞) with
1

u w
∈ L1(−1, 1) , (2.2)

K ∈ K(L∞u ,Cv). If, in addition, v ∈ C[−1, 1] (continuous extension) and

sup
t∈D(w)

‖k( . , t) w(t)‖v,γ,δ < ∞ , (2.3)

then K ∈ L
(
L∞u ,Cγ,δ

v

)
.

Proof. The first assertion is only a reformulation of a classical result in which
C[−1, 1] appears as image space. Although the theorem of Arcela-Ascoli is used in
the standard proof, it is worth to present the following approximation-theoretical
derivation, since this will give an idea how to obtain the second assertion. Let
h(x, t) be the continuous extension of v(x) k(x, t) w(t). We may write

(Kf)(x) =
1

v(x)

∫ 1

−1
h(x, t) f(t)

dt

w(t)
. (2.4)

From (2.2) it follows that K is a bounded linear operator from L∞u into

Bv =
{

g : D(v) → C : ‖g‖Bv := sup
x∈D(v)

|g(x)v(x)| < ∞
}

,

where the operator norm satisfies the estimate∥∥K∥∥
L∞u →Bv

≤ c ‖h‖C([−1,1]2)

(
c =

∫ 1

−1

dt

u(t)w(t)

)
. (2.5)

By a theorem of Weierstrass we can find polynomials hn(x, t) of degree less than
n in both variables such that hn → h uniformly on [−1, 1]2. Now we define Kn

by

(Knf)(x) :=
1

v(x)

∫ 1

−1
hn(x, t) f(t)

dt

w(t)
. (2.6)

Also Kn is an operator of the type (2.4) and, consequently, Kn ∈ L
(
L∞u ,Bv

)
.

Moreover, Kn is a finite rank operator, since Knf ∈ v−1Πn for all f ∈ L∞u
(particularly, Kn(L∞u ) ⊆ Cv). It follows

Kn ∈ K
(
L∞u ,Cv

)
for all n . (2.7)

Now we consider K−Kn. Again this an operator of the type (2.4) (replace h(x, t)
by h(x, t)− hn(x, t)) and (2.5) shows that∥∥K −Kn

∥∥
L∞u →Bv

≤ c ‖h− hn‖C([−1,1]2) −→ 0 for n →∞ . (2.8)
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Together with (2.7) we obtain K ∈ K
(
L∞u ,Cv

)
. If we would know that h can be

approximated by polynomials hn with a certain order of convergence, for example
nγ‖h − hn‖C([−1,1]2) lnδ(n + 1) ≤ const, then the above proof would even imply
that the images Kf multiplied by v could be uniformly approximated of the same
order by polynomials, for example vK ∈ L

(
L∞u ,Cγ,δ

)
. But this is not exactly

what we need in order to prove the second assertion. However, now it is clear
what to do: If v ∈ C[−1, 1], then we are looking for functions

hn(x, t) = v(x)
[
c
(n)
0 (t)+c

(n)
1 (t) x+. . .+c

(n)
n−1(t) xn−1

]
with c

(n)
i ∈ C[−1, 1] (2.9)

(which implies that Kn defined by (2.6) maps L∞u into Πn, particularly, Kn(L∞u ) ⊆
Cv) such that

‖h− hn‖C([−1,1]2) ≤
c

(n + 1)γ lnδ(n + 2)
for all n ∈ N ∪ {0} , (2.10)

where c is independent of n. If we could find such hn, then estimate (2.8) would
imply the second assertion. In the next lemma we will see that, under the addi-
tional condition (2.3) on k(x, t), the required hn exist.

�

Lemma 2.2 Let v ∈ C[−1, 1] (continuous extension). If h ∈ C([−1, 1]2) and

C := sup
t∈D(w)

∥∥v−1( . )h( . , t)
∥∥

v,γ,δ
< ∞ ,

then there are functions hn(x, t) of the form (2.9) such that (2.10) holds true.

Proof. Let n ∈ N ∪ {0} and let Pn( . , t) ∈ Πn (t ∈ D(w) fixed) denote a
polynomial of best approximation to v−1( . )h( . , t) in the norm of Cv. Then,

‖h( . , t)− v( . )Pn( . , t)‖∞ = Ev
n

(
v−1( . )h( . , t)

)
≤ C

(n + 1)γ lnδ(n + 2)
.

Further, choose δn > 0 such that

|h(x, t) –h(x, t0)| ≤
1

(n + 1)γ lnδ(n + 2)
for t, t0, x ∈ [−1, 1] with |t− t0| < δn.

Then it follows

|h(x, t)− v(x)Pn(x, t0)| ≤
1 + C

(n + 1)γ lnδ(n + 2)
(2.11)

for all (x, t) ∈ [−1, 1]2 and t0 ∈ D(w) with |t− t0| < δn. Now we choose numbers
tk ∈ D(w), k = 1, . . . ,m (tk and m depending on n), such that

−1 < t1 < t2 < . . . < tm < 1 and

max {t1 + 1, t2 − t1 , . . . , tm − tm−1, 1− tm} < δn .
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Then we define

hn(x, t) = v(x)
m+1∑
k=0

Pn(x, t̃k) Bk(t) , t̃k =


tk , 1 ≤ k ≤ m ,

t1 , k = 0 ,

tm , k = m + 1 ,

where Bk, k = 0, . . . ,m + 1, are the linear B-splines with respect to the partition
t0 = −1, t1, . . . , tm, tm+1 = 1, i.e.,

B0(t) =
max{0, t1 − t}

t1 + 1
, Bm+1(t) =

max{0, t− tm}
1− tm

,

Bk(t) = max
{

0 , min
{

t− tk−1

tk − tk−1
,

tk+1 − t

tk+1 − tk

}}
, k = 1, . . . ,m .

Clearly, hn(x, t) is a function of the required form. Moreover,
∑m+1

k=0 Bk = 1 on
[−1, 1] and, consequently,

h(x, t)− hn(x, t) =
m+1∑
k=0

[
h(x, t)− v(x)Pn(x, t̃k)

]
Bk(t) .

If we take into account that this sum has at most two non-zero addends for every
t and that the distance between t̃k and any point t ∈ [−1, 1] of the support of
Bk(t) is less than δn, then, in view of (2.11), we obtain (2.10) (with c = 2 + 2C).

�

Remark 2.3 The above proof shows that the assertions of Theorem 2.1 remain
true if L∞u is replaced by L1

w−1 := {f : fw−1 ∈ L1(−1, 1)} and that more general

approximation spaces of the type C{an}
v = {f ∈ Cv : supn anEv

n(f) < ∞} can be
considered instead of Cγ,δ

v . We have restricted ourselves to L∞u and Cγ,δ
v only

since these are the spaces of main interest if one wants to study singular integral
equations in weighted spaces of continuous functions (see, e.g., [7]).

3 Kernels with additional singularities on the diagonal

Now we consider kernels k(x, t) for which

h(x, t) = (t−x) v(x) k(x, t) w(t) ∈ C
(
[−1, 1]2

)
and h(t, t) = 0, t ∈ [−1, 1]. (3.1)

Here we assume that v ∈ C[−1, 1] is a power weight with v−1 ∈ L1(−1, 1), i.e.,

v(x) =
M∏

j=1

|x− xj |βj with xj ∈ [−1, 1] and βj ∈ (0, 1) . (3.2)

(We set D(v) = [−1, 1]\{xj}M
j=1. If M = 0, then v := 1.) We further assume that

there is a second power weight σ(t) =
∏N

i=1 |t − ti|αi (ti ∈ [−1, 1], N ∈ N ∪ {0})
such that, with some constant c > 0,

w(t) ≥ c σ(t) for all t ∈ D(w) , αi > 0 for all i ,
1

σ v
∈ L1(−1, 1) . (3.3)
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In the sequel we shall denote by c positive constants that may have different values
at different places. By c 6= c(f, x, . . .) we will indicate that c is independent of
f, x . . . .

Lemma 3.1 ([8], Lemma 3.4 and its proof) Let v be a weight of the form
(3.2). There is a constant c 6= c(g, x) such that∫ 1

−1

∣∣∣∣g(x, t)
t− x

∣∣∣∣ dt

v(t)
≤ c

v(x)

(
‖g(x, . )‖∞ +

∫ 1

−1

∣∣∣∣g(x, t)
t− x

∣∣∣∣ dt

)
for all x ∈ D(v) and all g : [−1, 1]2 → C with g(x, . ) ∈ L∞(−1, 1), x ∈ D(v).

Theorem 3.2 Let (3.1)–(3.3) be satisfied and suppose that

sup
t∈D(w)

‖(t− . ) k( . , t) w(t)‖v,γ,δ < ∞ .

Then, K ∈ L
(
L∞u ,Cγ,δ−1

vσ

)
for all

u : D(w) → (0,∞) with u w ≥ c σ a.e. on (−1, 1) . (3.4)

Particularly, K ∈ L
(
L∞u ,Cγ,δ−1

uvw

)
for all bounded u : D(w) → (0,∞) for which

uw is a power weight with nonnegative exponents and (uvw)−1 ∈ L1(−1, 1). (Set
σ = uw in this case.)

Proof. In view of Proposition 1.2, there exists some η > 0 such that h( . , t) ∈
Hη[−1, 1] for all t ∈ D(w), where sup

t∈D(w)
‖h( . , t)‖Hη < ∞. It follows

|h(x, t)| = |h(x, t)− h(t, t)| ≤ c |x− t|η for all (x, t) ∈ [−1, 1]×D(w) . (3.5)

Together with |f(t)|w−1(t) ≤ c ‖f‖u σ−1(t) a.e. on (−1, 1) and Lemma 3.1 (ap-
plied with σ instead of v) this shows that the absolute value of

(Kf)(x) =
1

v(x)

∫ 1

−1

h(x, t)
t− x

f(t)
dt

w(t)
(3.6)

can be estimated by c ‖f‖u v−1(x)σ−1(x). Thus, K ∈ L
(
L∞u ,Bvσ

)
. Now we

approximate h(x, t) by

gn(x, t) = hn(x, t)− v(x)
v(t)

hn(t, t) , n ∈ N ,

where hn(x, t) is the function from Lemma 2.2. If we replace h(x, t) by gn(x, t) in
(3.6), then we obtain an operator Kn which maps L∞u into Πn−1, since its kernel

v−1(x) hn(x, t)− v−1(t) hn(t, t)
(t− x) w(t)

= −
n−1∑
k=1

[v−1( . )hn( . , t)](k)

|x=t

k!
(x− t)k−1

w(t)
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is a polynomial of degree less than n − 1 in x the coefficients of which are L∞w –
functions in t. We have to estimate the norm of K − Kn. For this aim, we
introduce the intervals

In,x =
[
x− 1 + x

ns
, x +

1− x

ns

]
,

where s > 0 is some sufficiently large constant. (The following considerations will
show how big s must be.) Let χn,x(t) be the characteristic function of In,x and
let f ∈ L∞u . Then, for all x ∈ D(v),

∣∣[(K −Kn)f ](x)
∣∣ ≤ c ‖f‖u

[
1

v(x)

∫ 1

−1

∣∣∣∣χn,x(t) h(x, t)
t− x

∣∣∣∣ dt

σ(t)

+
∫ 1

−1

∣∣∣∣χn,x(t) [v−1(x) hn(x, t)− v−1(t) hn(t, t)]
t− x

∣∣∣∣ dt

σ(t)

+
1

v(x)

∫ 1

−1

∣∣∣∣ [1− χn,x(t)] [h(x, t)− hn(x, t)]
t− x

∣∣∣∣ dt

σ(t)

+
∫ 1

−1

∣∣∣∣1− χn,x(t)
t− x

∣∣∣∣ |hn(t, t)|
v(t)σ(t)

dt

]

=: c ‖f‖u

[
1

v(x)
I1 + I2 +

1
v(x)

I3 + I4

]
.

For t ∈ In,x we have, by (3.5), |h(x, t)| ≤ c |t − x|η ≤ c n−sη ≤ c n−γ ln−δ(n + 1)
(supposed that s > γ/η). Together with Lemma 3.1 it follows

I1 ≤ c

σ(x)

(
1

nγ lnδ(n + 1)
+
∫

In,x

|t− x|η−1dt

)

≤ c

σ(x)

(
1

nγ lnδ(n + 1)
+

1
nsη

)
≤ c

σ(x)
1

nγ lnδ(n + 1)
.

To estimate I2 we use that

χn,x(t) |v−1(x) hn(x, t)− v−1(t) hn(t, t)| ≤
∥∥[v−1( . ) hn( . , t)]′

∥∥
∞ χn,x(t) |x− t|

≤
2
∥∥[v−1( . ) hn( . , t)]′

∥∥
∞

ns
.

If we take into account that v−1( . ) hn( . , t) is a polynomial of degree less than n
and that Markov’s inequality ‖P ′

n‖∞ ≤ n2‖Pn‖∞ and Schur’s inequality ‖Pn‖∞ ≤
c nµ‖Pn‖v, µ = µ(v) > 0 some constant (see [10, (7.33)]), hold true for all Pn ∈
Πn, then we obtain∥∥[v−1( . ) hn( . , t)]′

∥∥
∞ ≤ c n2+µ‖hn( . , t)‖∞

≤ c n2+µ
(
‖hn − h‖C([−1,1]2) + ‖h‖C([−1,1]2)

)
≤ c n2+µ .
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Together with Lemma 3.1 it follows

I2 ≤
c

σ(x)

(
n2+µ

ns
+ n2+µ

∫
In,x

dt

)
≤ c

σ(x)
1

nγ lnδ(n + 1)

(supposed that s > γ + µ + 2). In I3 and I4 we estimate |h(x, t) − hn(x, t)| and
|hn(t, t)| = |hn(t, t)− h(t, t)|, respectively, by

‖h− hn‖C([−1,1]2) ≤
c

nγ lnδ(n + 1)

(see Lemma 2.2). By Lemma 3.1, the remaining integrals are bounded by

c

σ(x)

[
1 +

∫
[−1,1]\In,x

dt

|t− x|

]
and

c

v(x)σ(x)

[
1 +

∫
[−1,1]\In,x

dt

|t− x|

]
,

respectively. The last integral behaves like lnn and we obtain

I3 ≤
c

σ(x)
1

nγ lnδ−1(n + 1)
, I4 ≤

c

v(x)σ(x)
1

nγ lnδ−1(n + 1)
.

Thus, ‖K −Kn‖L∞u →Bvσ ≤ c n−γ ln1−δ(n + 1), n ∈ N. Together with Kn(L∞u ) ⊆
Πn−1 we obtain the assertion.

�
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