
MATRIX EXPONENTIALS AND INVERSION OF CONFLUENT
VANDERMONDE MATRICES

UWE LUTHER∗ AND KARLA ROST†

Abstract. For a given matrix A we compute the matrix exponential etA under the assumption
that the eigenvalues of A are known, but without determining the eigenvectors. The presented
approach exploits the connection between matrix exponentials and confluent Vandermonde matrices
V . This approach and the resulting methods are very simple and can be regarded as an alternative to
the Jordan canonical form methods. The discussed inversion algorithms for V as well as the matrix
representation of V −1 are of independent interest also in many other applications.
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1. Introduction

Given a (complex) matrix A of order n, the problem of evaluating its matrix
exponential etA is important in many applications, e.g., in the fields of dynamical
systems or control theory.

While the matrix exponential is often represented in terms of an infinite series
or by means of the Jordan canonical form our considerations have been inspired by
papers like [6] and [5], where alternative methods are discussed. In an elementary
way we here develop a representation of etA which involves only the eigenvalues (but
not the eigenvectors), the first (n−1) powers of A, and the inverse of a corresponding
confluent Vandermonde matrix V . Such a representation was already given in [4],
where an important motivation was to arrange the approach and the proofs simple
enough to be taught to beginning students of ordinary differential equations. We
here make some slight simplifications by proving such a representation, but we also
concentrate our attention to the problem of developing fast recursive algorithms for
the inversion of the confluent Vandermonde matrix V in the spirit of [4].

There is a large number of papers dealing with algorithms for nonconfluent and
confluent Vandermonde matrices. They mainly utilize the well-known connection of
Vandermonde systems with interpolation problems (see, e.g., [3] and the references
therein). Moreover, in [9], [8] the displacement structure of V (called there the prin-
ciple of UV-reduction) is used as a main tool.

In the present paper we want to stay within the framework of ordinary differential
equations. Together with some elementary facts of linear algebra, we finally arrive
at a first inversion algorithm which requires the computation of the partial fraction
decomposition of (det(λI − A))−1. This algorithm is in principle the algorithm de-
veloped in a different way in [10]. We here present a second algorithm which can be
considered as an improvement of the first one since the preprocessing of the coeffi-
cients of the partial fraction decomposition is not needed. Both algorithms are fast,
which means that the computational complexity is O(n2). As far as we know the
second algorithm gives a new version for computing V −1. For the sake of simplicity,
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let us here roughly explain the main steps of this algorithm for the nonconfluent case
V = (λj−1

i )ni,j=1 :
1. Start with the vector hn−1 = ( 1, 1, · · · , 1 )T ∈ Cn and do a simple recursion

to get vectors hn−2, . . . ,h0 and form the matrix H = ( h0 h1 · · · hn−1) .
2. Multiply the jth row of V with the jth row of H to obtain numbers qj and

form the diagonal matrix Q = diag(qj)n1 .
3. Multiply H from the left by the diagonal matrix P = Q−1 to obtain V −T .

In the confluent case the diagonal matrix P becomes a block-diagonal matrix with
upper triangular Toeplitz blocks (ti−j), t` = 0 for ` > 0 .

Moreover, we show how the inversion algorithms described above lead to a ma-
trix representation of V −1, the main factor of which is just V T . The other factors are
diagonal matrices, a triangular Hankel matrix (si+j), s` = 0 for ` > n , and a block
diagonal matrix with triangular Hankel blocks. For the nonconfluent case such a rep-
resentation is well known (see [11] or, e.g., [9]). Generalizations of representations of
this kind to other classes of matrices such as Cauchy-Vandermonde matrices or gen-
eralized Vandermonde matrices can be found in [2] and [7]. Fast inversion algorithms
for Vandermonde-like matrices involving orthogonal polynomials are designed in [1].

The paper is organized as follows. In Section 2 we discuss the connection of etA

with confluent Vandermonde matrices V and prove the corresponding representation
of etA. Section 3 is dedicated to recursive inversion algorithms for V. A matrix repre-
sentation of V −1 is presented in Section 4. In Section 5 we demonstrate the steps of
our algorithms by means of a matrix A of order 6. Finally, in Section 6 we give some
additional remarks concerning alternative possibilities for proving results of Sections
3 and 4, modified representations of etA in terms of finitely many powers of A, and
the determination of analytical functions of A. Moreover, for nonderogatory matrices
our results lead to a possibility to compute their (generalized) eigenvectors with the
help of products of certain matrices.

2. Connection between matrix exponentials and confluent Van-
dermonde matrices

Let A be a given n× n complex matrix and let

p(λ) = det(λI −A) = λn + an−1λ
n−1 + . . .+ a1λ+ a0 (2.1)

be its characteristic polynomial, λ1, λ2, . . . , λm its eigenvalues with the (algebraic)
multiplicities ν1, ν2, . . . , νm,

∑m
i=1 νi = n. In other words, we associate the polynomial

p(λ) = (λ− λ1)ν1 · . . . · (λ− λm)νm (2.2)

with the pairs (λi, νi) (i = 1, 2, . . . ,m). We are going to demonstrate in a very simple
way that the computation of etA can be reduced to the inversion of a corresponding
confluent Vandermonde matrix. The only fact we need is well known from a basic
course on ordinary differential equations: Each component of the solution x(t) = etAv
of the initial value problem

x′ = Ax , x(0) = v (2.3)

is a linear combination of the functions

eλ1t, teλ1t, . . . , tν1−1eλ1t, . . . , eλmt, teλmt, . . . , tνm−1eλmt. (2.4)
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Note that these functions are just n fundamental solutions of the ordinary differential
equation

y(n)(t) + an−1 y
(n−1)(t) + . . .+ a0 y(t) = 0 (2.5)

the constant coefficients of which are given in (2.1). To be more precise, there is an
n× n matrix C such that

x(t) = Ce(t) , (2.6)

where

e(t) =
(
eλ1t, teλ1t, . . . , tν1−1eλ1t, . . . , eλmt, teλmt, . . . , tνm−1eλmt

)T
.

Now we use x(t) = Ce(t) as an ansatz and determine the unknown matrix C by
comparing the initial values x(k)(0) = Ce(k)(0) with the given initial values x(k)(0) =
Akv, k = 0, 1, . . . , n− 1:

Ce(k)(0) = Akv , k = 0, 1, . . . , n− 1 . (2.7)

Considering the vectors e(0), e′(0), . . . , e(n−1)(0) and v, Av, . . . , An−1v as columns of
the matrices V and Av, respectively,

V =
(
e(0) e′(0) . . . e(n−1)(0)

)
, Av =

(
v Av . . . An−1v

)
, (2.8)

the equalities (2.7) can be rewritten in matrix form

CV = Av . (2.9)

We state that V has the structure of a confluent Vandermonde matrix,

V =




V (λ1, ν1)
V (λ2, ν2)

...
V (λm, νm)


 , (2.10)

where

V (λ, ν) =




1 λ λ2 λ3 . . . λn−1

0 1 2λ 3λ2 . . . (n− 1)λn−2

0 0 2 6λ . . . (n− 1)(n− 2)λn−3

...
. . .

...
0 . . . 0 (ν − 1)! . . . (n− 1) · ... · (n− ν + 1)λn−ν



.

It is easy to see that V is nonsingular and together with (2.6) and (2.9) we obtain the
following.

Lemma 2.1. The solution x(t) of the initial value problem (2.3) is given by

x(t) = etAv = AvV
−1e(t) , (2.11)

where V , Av are defined in (2.8).
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Now, taking into account that AvV
−1e(t) =

∑n−1
i=0 yi(t)A

iv, where

(
yi(t)

)n−1

i=0
= V −1e(t) , (2.12)

(2.11) leads to the following expression of etA.

Theorem 2.2. ([4], (1.10) and (1.15)) The matrix exponential etA can be repre-
sented as

etA = y0(t)I + y1(t)A+ . . .+ yn−1(t)An−1 , (2.13)

where yi(t), i = 0, 1, . . . , n− 1, are defined in (2.12).

Let us define the multiplication of a row vector (A1, . . . , An) of matrices Ai ∈
Cn×n and a column vector v = (v1, . . . , vn)T of scalars vi ∈ C by

(A1, A2, . . . , An) v = v1A1 + v2A2 + . . .+ vnAn . (2.14)

Then (2.12), (2.13) can be rewritten in a more compact form,

etA =
(
I, A,A2, . . . , An−1

)
y(t) , where y(t) = V −1e(t) . (2.15)

Representation (2.15) is already known (see [4] and the references therein). The proof
given in [4] is nice and, as promised there, it can be appreciated by students in a
course on ordinary differential equations. In this paper the known initial values of etA

are compared with the initial values of the ansatz

etA = (C1, C2, . . . , Cn) f(t), (2.16)

where f(t) is an arbitrary vector of n fundamental solutions of (2.5) and Ci are n×n
matrices. But this requires the application of a formal vector-matrix product defined
for matrices Ai, i = 1, . . . , n, and U of order n as follows

(A1, . . . , An)U = ((A1, . . . , An) u1, . . . , (A1, . . . , An) un) , (2.17)

where ui denotes the ith column of U .
Possibly, the derivation given above is more natural and easier to understand. In

particular, the special choice f(t) = e(t) is also a simplification and does not mean any
loss of generality. Of course, instead of the vector e(t), one can use any other vector
f(t) of n fundamental solutions of (2.5). But, denoting by Wf the Wronski matrix
of f , Wf = (f f ′ . . . f (n−1)), the equality (2.11) is replaced by etAv = AvV

−1
f f(t) ,

where Vf = Wf (0). This leads to the same representation (2.15) of etA, since V −1
f f(t)

does not depend on the choice of f (compare the proof of Lemma 3.1).

Remark 2.3. Denoting by ek(t) the kth component of e(t) and by vk the kth column
of V −1, then V −1e(t) =

∑n
k=1 ek(t) vk, and we obtain, as a consequence of (2.15),

etA = (C1, C2, . . . , Cn) e(t), where

Ck =
(
I, A,A2, . . . , An−1

)
vk . (2.18)

In the sense of (2.17) this can be written as

(C1, C2, . . . , Cn) =
(
I,A,A2, . . . , An−1

)
V −1 . (2.19)
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Let us summarize: For an n×n matrix A having the eigenvalues λi with the alge-
braic multiplicities νi the matrix exponential etA is given by (2.15), where V −1 is the
inverse of the confluent Vandermonde matrix corresponding to the pairs (λi, νi), i =
1, . . . ,m,

∑
νi = n.

The special structure of the matrix V can be used to compute its inverse V −1 in
a much more efficient way than e.g. Gaussian eliminations do. Thus we will proceed
with designing inversion algorithms the computational complexity of which is O(n2).
Such fast algorithms have been already presented and discussed in a large number of
papers (see e.g. [3] and references therein).

On one hand, we want to develop here a new version of such an algorithm, on the
other hand, we intend to follow the spirit of the authors of [4], namely to be simple
enough for a presentation to students of an elementary course on ordinary differential
equations. Thus, we will discuss inversion algorithms exploiting elementary results
of Linear Algebra, but, as far as it is possible, all within the framework of ordinary
differential equations. Consequently, numerical aspects and criteria such as e.g. sta-
bility will be beyond the scope of this paper, but will be discussed in a forthcoming
paper.

3. Recursive algorithms for the inversion of V

Hereafter, let ek be the kth unit vector and wT
k−1 the kth row of V −1, wT

k−1 =
eTk V

−1. We start with developing a recursion for the rows wT
i ( i = n − 2, . . . , 0 ) of

V −1 from its last row wT
n−1 . As a basis we use the following fact.

Lemma 3.1. The vector y(t) = V −1e(t) is the solution of the initial value problem

{
y′ = By,
y(0) = e1,

where B =




0 0 · · · 0 −a0

1 0 · · · 0 −a1

. . .
...

...
0 · · · 1 0 −an−2

0 · · · 0 1 −an−1




(3.1)

and a0, . . . , an−1 are the coefficients of the characteristic polynomial (2.1).

Proof. The matrix B is just the companion matrix of p(λ). Moreover, in view of
( e1 Be1 . . . Bn−1e1 ) = In, we conclude from (2.11) that

etBe1 = V −1e(t) = y(t) ,

which completes the proof. �

Corollary 3.2. The components of y(t) =
(
yk(t)

)n−1

k=0
can be recurrently determined

from the last component yn−1(t):

yk−1(t) = y′k(t) + akyn−1(t) , k = n− 1, . . . , 1 . (3.2)

(For k = 0 this is also true if we set y−1 = 0.)
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Let us introduce the block-diagonal matrix

J̃ = diag
(
J̃1, . . . , J̃m) , (3.3)

where J̃i = λi in case νi = 1, otherwise

J̃i =




λi 1
λi 2

λi 3
. . . . . .

λi νi − 1
λi



.

Then, taking into account that yk(t) = wT
k e(t) and e′(t) = J̃ T e(t), we obtain the

following reformulation of (3.2).

Lemma 3.3. The rows wT
0 , . . . ,w

T
n−1 of V −1 satisfy the recursion

wk−1 = J̃wk + akwn−1 , k = n− 1, . . . , 0 . (3.4)

(For k = 0 set w−1 = 0.)

Now we are left with the problem how to compute the last row wT
n−1 of V −1. To

solve this we decompose p(λ)−1 into partial fractions

1
p(λ)

=
m∑

i=1

νi∑

j=1

pij
(λ− λi)j . (3.5)

Theorem 3.4. The last row wT
n−1 of V −1 is given by the coefficients of (3.5) as

follows

wT
n−1 =

(
p11

0!
,
p12

1!
, · · · , p1 ν1

(ν1 − 1)!
, · · · , pm1

0!
, · · · , pmνm

(νm − 1)!

)
. (3.6)

Proof. Since the function y(t) = (yi(t))
n−1
i=0 satisfies y(k)(0) = Bke1 = ek+1 for

k = 0, 1, . . . , n− 1 (see Lemma 3.1) we obtain, in particular, that the last component
yn−1(t) = wT

n−1e(t) is the solution of the initial value problem

y(n) + an−1y
(n−1) + · · ·+ a0y = 0 , (3.7)

y(0) = · · · = y(n−2)(0) = 0 , y(n−1)(0) = 1 . (3.8)

We consider now the Laplace transform of yn−1(t) defined by

(Lyn−1) (s) =
∫ ∞

0

e−s tyn−1(t) dt .

In view of (3.8), L applied to (3.7) yields

(Lyn−1)(s) =
1
p(s)
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which can be decomposed into partial fractions as in (3.5). By applying the back
transform we obtain

yn−1(t) =
m∑

i=1

νi∑

j=1

pij
(j − 1)!

tj−1eλi t

=
(p11

0!
,
p12

1!
, · · · , p1 ν1

(ν1 − 1)!
, · · · , pm1

0!
, · · · , pmνm

(νm − 1)!

)
e(t) ,

and (3.6) is proved. �

Now we are in the position to propose a first inversion algorithm for V .

Algorithm I:
1) Compute the coefficients pij of the partial fraction expansion (3.5) and form

the vector wn−1 as in (3.6).
2) Compute the remaining rows of V −1 via the recursion (3.4).

It is well known that the coefficients in the partial fraction decomposition can be
computed by means of an ansatz and the solution of a corresponding linear system of
equations. This can be organized in such a way that the computational complexity
of Algorithm I is O(n2).

We propose now a further possibility the advantages of which seem to be that
the precomputing of the coefficients pij is not necessary and that the recursion starts
always with a “convenient” vector. To that aim let us adopt some notational conven-
tion. Introduce the following block-diagonal matrices with upper triangular Toeplitz
blocks,

P = diag(Pk)mk=1 with Pk =




pkνk pk νk−1 · · · pk1

pkνk
. . .

...
. . . pk νk−1

0 pkνk



,

J = diag(Jk)mk=1 with Jk =




λk 1 0
. . . . . .

λk 1
0 λk


 ∈ C

νk×νk ,

and define the diagonal matrix

D = diag(Dk)mk=1 with Dk = diag
(

1
0!
,

1
1!
, · · · , 1

(νk − 1)!

)
.

Obviously, D and P are nonsingular matrices.
It is easy to see that

wn−1 = DP hn−1 , (3.9)

where hn−1 is the sum of the unit vectors eν1 , eν1+ν2 , . . . , en , i.e.

hn−1 = (0, · · · , 0, 1︸ ︷︷ ︸
ν1

, 0, · · · , 0, 1︸ ︷︷ ︸
ν2

, · · · , 0, · · · , 0, 1︸ ︷︷ ︸
νm

)T . (3.10)
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We consider the recursion

hk−1 = J hk + akhn−1 , k = n− 1, . . . , 0 . (3.11)

Lemma 3.5. The recursion (3.11) produces the rows wT
k−1 of V −1 as follows

wk−1 = DP hk−1 , k = n, . . . , 1 . (3.12)

(Putting w−1 = 0 the equality (3.12) is also true for k = 0.)

Proof. We have, due to (3.11) and (3.9),

DP hk−1 = DPJ hk + akwn−1 , k = n− 1, . . . , 0 . (3.13)

Now, it is easy to verify that J̃D = DJ and JP = PJ . Hence, (3.13) shows that

DP hk−1 = J̃DP hk + akwn−1 , k = n− 1, . . . , 0 .

We compare this with (3.4) and state that DP h−1 = 0 implies h−1 = 0, which
completes the proof. �

The following fact has been already stated in [10].

Corollary 3.6. The transpose of V −1 is given by

V −T = DPH ,

where H = (h0 h1 · · · hn−1).

From Corollary 3.6 it follows that

P−1 = HV TD .

On the other hand we have, obviously,

P−1 = diag(Qk)mk=1 with Qk = P−1
k .

One can easily see that the inverse of a (nonsingular) upper triangular Toeplitz matrix
is again an upper triangular Toeplitz matrix, i.e., that Qk has the form

Qk =




qkνk qk νk−1 · · · qk1

qkνk
. . .

...
. . . qk νk−1

0 qkνk



, (3.14)

where q(k) = (qk1, . . . , qkνk)T is the last column of P−1
k , i.e. the solution of the

equation Pkq(k) = eνk . Thus, the matrix Q = P−1 is completely given by that n
elements of HV T = QD−1 which stand in the last columns of the diagonal blocks of
HV T ,

HV T = diag







. . . . . . . . . qk1 (νk − 1)!
. . . . . . qk2 (νk − 1)!

. . .
...

qkνk (νk − 1)!







m

k=1

. (3.15)
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With the entries of the vector q(k) we form the matrix Qk and compute the solution
p(k) = (pk1, . . . , pkνk)T of

Qkp(k) = eνk , (3.16)

which gives the matrix Pk.
Now we propose the following second inversion algorithm for V .

Algorithm II:
1) Compute recurrently the columns hj−1, j = 1, . . . , n of H by (3.11).
2) Compute that n elements qkj(νk−1)! of the product HV T (see (3.15)) which

determine the blocks Qk (see (3.14)) of the matrix P−1 = diag(Qk)mk=1.
3) Compute the upper triangular Toeplitz matrices Pk by solving (3.16) and

form the matrix P = diag(Pk)mk=1.
4) Compute V −1 = (DPH)T .

In case that the multiplicities νk are small compared with n the computational
complexity of the algorithm is again O(n2).

Our next aim is to develop a matrix representation of V −1.

4. Matrix representation of V −1

Let us start with the nonconfluent case. Since in this case J̃ = diag(λi)n1 , the
recursion (3.4) together with (3.6) leads directly to the following representation

V −1 =




a1 · · · an−1 1
... . .

.
. .

.

an−1 1
1 0


 V T diag

(
pk1

)n
k=1

.

(Note that pk1 = p′(λk)−1.) This means that the inverse of a Vandermonde matrix V
is closely related to its transpose V T .

Now we are going to show that such a representation is also possible in the
confluent case. Recall that p(λ) =

∑n
i=0 aiλ

i , where an = 1. Then the matrix H can
be computed as follows.

Lemma 4.1.

H =
n−1∑

i=0

J i hn−1(ai+1, · · · , an, 0, · · · , 0) . (4.1)

Proof. Denote the columns of the matrix on the right hand side of (4.1) by h̃k
(k = 0, 1, . . . , n− 1),

h̃k =
n−1∑

i=0

J i hn−1(ai+1, · · · , an, 0, · · · , 0) ek+1 =
n−k−1∑

i=0

ak+i+1J
i hn−1 .

Then, clearly, h̃n−1 = hn−1 , and we observe that

J h̃k + akh̃n−1 =
n−k−1∑

i=0

ak+i+1J
i+1hn−1 + akhn−1 =

n−k∑

i=0

ak+iJ
i hn−1 ,
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which is just h̃k−1 . Thus, h̃k satisfies the recursion (3.11) which proves that h̃k = hk
for k = 0, 1, . . . , n− 1 . �

Let Zνk be the νk×νk matrix of counteridentity which has ones on the antidiagonal
and zeros elsewhere. Then we obtain the following matrix representation of V −1.

Theorem 4.2.

V −1 =




a1 · · · an−1 1
... . .

.
. .

.

an−1 1
1 0


 V T diag

(
Gk
)m
k=1

, (4.2)

where Gk = DkPkZνkDk .

Before we prove this theorem, let us mention that (up to diagonal matrices) the
blocks of the last factor of (4.2) are triangular Hankel matrices

Gk = Dk




pk1 pk2 · · · pk νk−1 pkνk
pk2 pkνk

... . .
.

pk νk−1 pkνk
pkνk 0



Dk .

Proof of Theorem 4.2. Since PkZνk = ZνkP
T
k , the last factor diag

(
Gk
)m
k=1

on the
right hand side of (4.2) is equal to

DZPTD , where Z = diag
(
Zνk
)m
k=1

.

The first factor of representation (4.2) can be written as

n−1∑

i=0

ei+1a(i) ,

where a(i) = (ai+1, · · · , an, 0, · · · , 0). Consequently, (4.2) is equivalent to

V −T = DPZDV

n−1∑

i=0

ei+1a(i) .

In view of Corollary 3.6 and Lemma 4.1 it remains to show that

n−1∑

i=0

J i hn−1a(i) = ZDV

n−1∑

i=0

ei+1a(i) . (4.3)

It is easy to see that

J i = diag
(

(λkIνk + Sνk)i
) m

k=1
= diag




i∑

j=0

(
i

j

)
λi−jk Sjνk




m

k=1

,
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where Sν denotes the forward shift of order ν,

Sν =




0 1 0
. . . . . .

0 1
0 0


 . (4.4)

Now, it follows that J i hn−1 =
(
uT1 , · · · ,uTm

)T with

uk =
i∑

j=0

(
i

j

)
λi−jk Sjνkeνk =

νk−1∑

j=0

(
i

j

)
λi−jk eνk−j

=
((

i

νk − 1

)
λi−νk+1
k ,

(
i

νk − 2

)
λi−νk+2
k , · · · ,

(
i

0

)
λik

)T
.

One can easily check that the same vector uk can be obtained from the part V (λk, νk)
of V (see (2.10)) by

ZνkDkV (λk, νk)ei+1 .

This means that

J i hn−1 = ZDV ei+1 ,

and (4.3) is proved. �

5. Example

Let us compute etA for the following matrix A of order 6,

A =




3.5 0.5 −0.5 −0.5 −0.5 −0.5
3.5 4.5 1.5 −1.5 −3.5 −5.5
−1 −0.5 2 1.5 1 0.5

3 1.5 0 0.5 −2 −1.5
−3.5 −2 −0.5 1 4.5 2

5.5 3 0.5 −2 −4.5 −4



.

Its characteristic polynomial p(λ) = det(λI −A) is

p(λ) = λ6 − 11λ5 + 45λ4 − 77λ3 + 22λ2 + 84λ− 72
= (λ− 3)2(λ− 2)3(λ+ 1) .

Thus, the corresponding confluent Vandermonde matrix V is given by



1 λ1 λ2
1 λ3

1 λ4
1 λ5

1

0 1 2λ1 3λ2
1 4λ3

1 5λ4
1

1 λ2 λ2
2 λ3

2 λ4
2 λ5

2

0 1 2λ2 3λ2
2 4λ3

2 5λ4
2

0 0 2 6λ2 12λ2
2 20λ3

2

1 λ3 λ2
3 λ3

3 λ4
3 λ5

3




=




1 3 9 27 81 243
0 1 6 27 108 405
1 2 4 8 16 32
0 1 4 12 32 80
0 0 2 12 48 160
1 −1 1 −1 1 −1



.
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Let us compute V −1 with the help of the first inversion algorithm. For this aim we
need the partial fraction decomposition of p(λ)−1 which is

−13
16

1
λ− 3

+
1
4

1
(λ− 3)2

+
22
27

1
λ− 2

+
5
9

1
(λ− 2)2

+
1
3

1
(λ− 2)3

− 1
432

1
λ+ 1

.

Due to (3.6) the last row of V −1 is given by

wT
5 =

(
−13

16
,

1
4
,

22
27
,

5
9
,

1
6
, − 1

432

)
.

To compute the other rows wT
0 , · · · ,wT

4 of V −1 we use (3.4),

w4 = J̃w5 − 11w5 ,

w3 = J̃w4 + 45w5 ,

w2 = J̃w3 − 77w5 ,

w1 = J̃w2 + 22w5 ,

w0 = J̃w1 + 84w5 ,

where J̃ =




3 1
3

2 1
2 2

2
−1



. (5.1)

Starting from below we write wT
5 , wT

4 , · · · ,wT
0 as rows of a matrix and obtain

V −1 =




−43
2

6
67
3

14 6
1
6

69
4

−5 −152
9

−37
3

−4 −13
36

103
8

−7
2

−356
27

−76
9

−23
6

67
216

−293
16

21
4

166
9

38
3

9
2

− 19
144

27
4

−2 −61
9

−14
3

−3
2

1
36

−13
16

1
4

22
27

5
9

1
6

− 1
432




.

Now the matrices Ci in the representation

etA = (C1, C2, C3, C4, C5, C6) e(t)
= e3tC1 + te3tC2 + e2tC3 + te2tC4 + t2e2tC5 + e−tC6

can be computed by formula (2.18):
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C1 = −43
2
I +

69
4
A+

103
8
A2 − 293

16
A3 +

27
4
A4 − 13

16
A5

=




1.5 1 0.5 0 −0.5 −1
0 0 0 0 0 0
0 0 0 0 0 0
1 0.5 0 −0.5 −1 −0.5

−0.5 0 0.5 1 1.5 0
1 0.5 0 −0.5 −1 −0.5



,

C2 = 6 I − 5A− 7
2
A2 +

21
4
A3 − 2A4 +

1
4
A5

=




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

1.5 1 0.5 0 −0.5 −1
−3 −2 −1 0 1 2
1.5 1 0.5 0 −0.5 −1



,

C3 =
67
3
I − 152

9
A− 356

27
A2 +

166
9
A3 − 61

9
A4 +

22
27
A5

=




−0.5 −1 −0.5 0 0.5 1
1 1.5 0 −0.5 −1 −1.5
0 0 1 0 0 0
−1 −0.5 0 1.5 1 0.5
0.5 0 −0.5 −1 −0.5 0

0 0 0 0 0 0



,

C4 = 14 I − 37
3
A− 76

9
A2 +

38
3
A3 − 14

3
A4 +

5
9
A5

=




0 −0.5 −1 −0.5 0 0.5
0.5 1 1.5 0 −0.5 −1
−1 −0.5 0 1.5 1 0.5
0.5 0 −0.5 −1 −0.5 0

0 0 0 0 0 0
0 0 0 0 0 0



,

C5 = 6 I − 4A− 23
6
A2 +

9
2
A3 − 3

2
A4 +

1
6
A5

=




0.25 0 −0.25 −0.5 −0.25 0
−0.5 0 0.5 1 0.5 0
0.25 0 −0.25 −0.5 −0.25 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



,
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C6 =
1
6
I − 13

36
A+

67
216

A2 − 19
144

A3 +
1
36
A4 − 1

432
A5

=




0 0 0 0 0 0
−1 −0.5 0 0.5 1 1.5

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
−1 −0.5 0 0.5 1 1.5



.

In the first step of the above used inversion algorithm for V we have supposed
that the coefficients

(p11 , p12 , p21 , p22 , p23 , p31) =
(
−13

16
,

1
4
,

22
27
,

5
9
,

1
3
, − 1

432

)
(5.2)

of the partial fraction decomposition of p(λ)−1 are already computed. If we use the
second algorithm of Section 3, then we do not need these coefficients in advance. Let
us demonstrate this for our example.

First we have to compute the matrix H = (h0 · · · h5). By (3.10) we have

h5 = (0, 1, 0, 0, 1, 1)T .

The columns h4, · · ·,h0 are computed by recurrence (3.11) (analogously to (5.1)):

h4 = Jh5 − 11h5 ,

h3 = Jh4 + 45 h5 ,

h2 = Jh3 − 77 h5 ,

h1 = Jh2 + 22 h5 ,

h0 = Jh1 + 84 h5 ,

where J =




3 1
3

2 1
2 1

2
−1



.

We obtain

H =




−8 4 6 −5 1 0
24 −20 −14 21 −8 1
9 3 −5 1 0 0

−18 3 13 −7 1 0
36 −24 −23 27 −9 1
−72 156 −134 57 −12 1



.

Now we compute the last columns of the blocks of HV T (see (3.15)),

HV T = H




1 0 1 0 0 1
3 1 2 1 0 −1
9 6 4 4 2 1

27 27 8 12 12 −1
81 108 16 32 48 1

243 405 32 80 160 −1




=




∗ 13
4

∗ ∗ 2
∗ −10

6
−432



.



Matrix Exponentials and Inversion of Confluent Vandermonde Matrices 15

From these columns we obtain the matrix Q = diag(Qk)3
k=1 (see (3.14)),

Q =




4 13
4

3 −5 1
3 −5

3
−432



.

It is easy to invert this matrix, which yields

P = Q−1 =




1
4

−13
16
1
4

1
3

5
9

22
27

1
3

5
9
1
3

− 1
432




.

We remark that just the coefficients (5.2) stand in the last columns of the blocks of
P . Now we may compute (DPH)T , D = diag

(
1, 1, 1, 1, 1

2 , 1
)
, to obtain V −1.

6. Final remarks

Remark 6.1. The assertion wk−1 − J̃ wk = akwn−1 (k = 0, . . . , n − 1) of Lemma
3.3, written in matrix form

V −TSn − J̃ V −T = wn−1(a0, a1, · · · , an−1), (6.1)

where Sn is defined in (4.4), is the so-called displacement equation for V −T (see [8]).
This equation may also be concluded from the well known equality

BTV T = V T J̃ , (6.2)

where B is defined in (3.1). Indeed, (6.2) is equivalent to (6.1), since

V −TSn −wn−1(a0, a1, · · · , an−1) = V −TBT .

Thus, proving Lemma 3.3 by checking (6.2) is an alternative to the proof given in
Section . Moreover, we mention that (6.2) can also be viewed as a direct consequence
of Lemma 3.1, since replacing y in y′ = By by its definition y = V −1e(t) yields
V −1J̃ T e(t) = BV −1e(t), i.e., V −1J̃ T = BV −1.
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Remark 6.2. To prove the assertion of Theorem 3.4 one can use, instead of the
Laplace transformation, the Laurent series expansion at infinity

1
(λ− λi)j =

(−1)j−1

(j − 1)!

[
1
λ

∞∑

k=0

(
λi
λ

)k](j−1)

=
∞∑

k=j

(
k − 1
j − 1

)
λk−ji

λk
(|λ| > |λi|).

Indeed, using two representations of p(λ)−1, namely (3.5) and
∏
i(λ − λi)−νi , we

obtain its Laurent series expansion in two different forms. Comparing the coefficients
of λ−1, λ−2, · · ·, λ−n, one gets n equations which show that the vector on the right hand
side of (3.6) multiplied by V from the right yields eTn .

Remark 6.3. The last step leading to the matrix representation (4.2) of V −1 was a
direct proof of J i hn−1 = ZDV ei+1 (i = 0, · · · , n− 1). We mention that this can also
be proved by using the well known formula for etJ applied to hn−1,

etJhn−1 = ZD e(t) . (6.3)

Indeed, we only have to compare (6.3) with the representation

etJhn−1 =
(
hn−1 J hn−1 · · · Jn−1 hn−1

)
V −1e(t)

from Lemma 2.1 to obtain
(
hn−1 J hn−1 · · · Jn−1 hn−1

)
= ZDV .

Remark 6.4. In Section 2 we have only used that each component of etA is a solution
of (2.5). This fact is a consequence of the Cayley-Hamilton theorem p(A) = 0. Hence,
if

q(λ) = λN + bN−1 λ
N−1 + · · ·+ b1 λ+ b0

is any other polynomial with q(A) = 0, for example the minimal polynomial of A
satisfying N ≤ n, then the components of etA are solutions of

y(N)(t) + bN−1 y
(N−1)(t) + · · ·+ b0 y(t) = 0 (6.4)

(since the matrix valued function Y (t) = etA solves this equation). So we obtain, in
the same way as in Section 2,

etAv =
(
v Av A2v · · · AN−1v

)
V −1
q eq(t) , (6.5)

where Vq is the confluent Vandermonde matrix corresponding to the zeros of q(λ) and
eq(t) denotes the vector of the standard fundamental solutions of (6.4). The resulting
representation of etA is

etA = (I, A,A2, · · · , AN−1) yq(t) , where yq(t) = V −1
q eq(t) .

Remark 6.5. Assume for sake of simplicity that all νk are equal to ν, where ν is small
compared with n. Then using representation (4.2) the matrix-vector multiplication
with the inverse of a (confluent) Vandermonde matrix V can be done with O(n log2 n)
computational complexity. Indeed, utilizing FFT techniques then the complexity of
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the multiplication of an n × n triangular Hankel matrix and a vector is O(n log n) .
In particular, this leads to a complexity of O(n) for the matrix vector multiplication
with diag

(
Gk
)m
k=1

. Now, the rows of the matrix V T can be reordered in such a way
that the first m rows form a nonconfluent m×n Vandermonde matrix, the (km+1)th
up to ((k+ 1)m)th rows a nonconfluent Vandermonde matrix multiplied by a diagonal
matrix, k = 1, . . . , ν . With the ideas of [2] concerning the nonconfluent case this leads
to a complexity of O(n log2 n) to multiply V T with a vector.

Remark 6.6. The matrix representation (4.2) of V −1 suggests a third inversion algo-
rithm for V : Let us denote the first and the last factor on the right hand side of (4.2)
by H(a) and G, respectively. Up to diagonal matrices, the blocks of G are triangular
Hankel matrices. This implies that the inverse G−1 has the same structure. Thus,
G−1 = V H(a)V T is completely determined by n entries of the product V H(a)V T .
Using a fast algorithm for the application of H(a), these entries can be determined
with O(n2 logn) operations. Now, the resulting matrix can be inverted efficiently to
obtain G.

Remark 6.7. The exponential of the companion matrix B (see (3.1)) is given by

etB =
(
y(t) y′(t) · · · y(n−1)(t)

)
, y(t) = V −1e(t) . (6.6)

This follows from y(t) = etBe1. Let us assume that A is nonderogatory, i.e. that
there exists a nonsingular matrix U such that AU = UB. Let v be the first column of
U. Then

Av = UBe1 = Ue2, . . . , A
n−1v = Uen,

which means that U = Av, where Av is defined in (2.8). On the other hand, if there
is a v such that Av is nonsingular, then

AvB = Av S
T
n −Av (ai)

n−1
i=0 eTn

=
(
Av · · · An−1v 0

)− ( 0 · · · 0 p(A)v −Anv
)

= AAv ,
(6.7)

which shows that A is nonderogatory. To sum up, we can state that A is nonderogatory
if and only if there exists a v such that Av is invertible. In this case we have

etA = Av

(
y(t) y′(t) · · · y(n−1)(t)

)
A−1

v .

Remark 6.8. If A is nonderogatory, i.e. if there is a vector v such that Av is
invertible (see Remark 6.7), then the matrices Av and HT (or V −1) can be used to
compute a linearly independent system of n generalized eigenvectors of A. Indeed, for
the matrix B two of such systems are given by the columns of HT (since, by (3.11)
and assertion h−1 = 0 of Lemma 3.5, HBT = JH) and the columns of V −1 (see
(6.2)), so that (6.7) shows that AvH

T and AvV
−1 consist of generalized eigenvectors

of A, more precisely,

AAvH
T = AvH

TJT and AAvV
−1 = AvV

−1J̃ T .
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If one wants to transform A into its Jordan canonical form J , then one has only to
take into account that J̃ TD−1 = D−1JT , JTZ = ZJ (see the proofs of Lemma 3.5
and Theorem 4.2) and, consequently,

AAvH
TZ = AvH

TZJ and AAvV
−1D−1Z = AvV

−1D−1ZJ . (6.8)

(This is also true if Av is singular. But in this case the columns of AvH
TZ and

AvV
−1D−1Z, respectively, are not linearly independent.) These equations are simple

algebraic facts and surely known. But one can use the matrix representation (4.2)
of V −1 together with the obvious equality JP = PJ to obtain the following nice
reformulation of (6.8),

AAvH(a)V TD = AvH(a)V TDJ ,

where H(a) denotes the first factor on the right hand side of (4.2). Now we see that
no matrix has to be inverted to obtain generalized eigenvectors of A. One only has to
compute the product AvH(a)V TD (= AvH

TZ).

Remark 6.9. For f(z) = ez we have f(A) =
(
I, A, · · · , An−1

) · f(B)e1 (since
y(t) = etBe1). We mention that this is also true for an arbitrary power series

f(z) =
∞∑
m=0

αm(z − z0)m

with convergence radius R > 0 and its corresponding matrix valued function

f(A) =
∞∑
m=0

αm(A− z0I)m , A ∈ Cn×n, max
i
|λi(A)− z0| < R .

Indeed, if we compare the initial values of both sides of the equation e−z0tetA =(
I, A, · · · , An−1

) · e−z0tetBe1, then we obtain

(A− z0I)m =
(
I, A, · · · , An−1

) · (B − z0I)me1 ,

which yields the assertion. For the application to an vector this means

f(A)v = Avf(B)e1 .

We remark that the vector (β0, · · · , βn−1)T = f(B)e1 is just the coefficient vector of
the Hermite interpolation polynomial P (z) =

∑n−1
k=0 βk z

k of f(z) with respect to the
eigenvalues λi of A and their algebraic multiplicities νi. This follows from (6.2):

V f(B)e1 = V f(B)V −1V e1 = f(V BV −1)V e1 = f
(
J̃ T
)
V e1

=
(
f(λ1), f ′(λ1), · · · , f (ν1−1)(λ1), · · · , f(λm), · · · , f (νm−1)(λm)

)T
.



Matrix Exponentials and Inversion of Confluent Vandermonde Matrices 19

REFERENCES

[1] D. Calvetti and L. Reichel, Fast inversion of Vandermonde-like matrices involving orthog-
onal polynomials, BIT, 33 (1993), 473-484.

[2] T. Finck, G. Heinig, and K. Rost, An inversion formula and fast algorithms for Cauchy-
Vandermonde matrices, Linear Algebra Appl., 183 (1993), 179-192.

[3] G. H. Golub and C. F. van Loan, Matrix Computations, Third Edition, The Johns Hopkins
U.P., Baltimore, London, 1996.

[4] W. A. Harris, Jr., J. P. Fillmore, and D. R. Smith, Matrix exponentials - another approach,
SIAM Rev., 43 (2001), 694-706.

[5] I. E. Leonard, The matrix exponential, SIAM Rev., 38 (1996), 507-512.
[6] C. Moler and C. F. van Loan, Nineteen dubious ways to compute the exponential of a matrix,

SIAM Rev., 20 (1978), 801-836.
[7] G. Heinig, Hermite’s formula for vector polynomial interpolation with applications to struc-

tured matrices, Appl. Anal., 70 (1999), 331-345.
[8] G. Heinig, W. Hoppe, and K. Rost, Structured matrices in interpolation and approximation

problems, Wiss. Zeitschrift der TU Karl-Marx-Stadt, 31, 2 (1989), 196-202.
[9] G. Heinig and K. Rost, Algebraic Methods for Toeplitz-like Matrices and Operators,

Akademie-Verlag, Berlin, Birkhäuser Verlag, Basel, 1984.
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