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ABSTRACT. Limit operators are used when the behaviour of an operator at some
singular, outstanding point like ∞ is of interest. Typical applications are the study of
Fredholmness and invertibility at infinity of an operator, but also the applicability of
approximation methods. All these properties can be characterized by the invertibility
of several limit operators and the uniform boundedness of their inverses. We will show
that the uniform boundedness condition is redundant in the cases Lp(Rn) and `p(Zn)
for p = 1 and p = ∞.

1 Introduction

In many situations one has to describe an operator’s behaviour at some singular, out-
standing point θ. This is where limit operators enter the scene. They are supposed
to be introduced by Favard (1902-1965) in the late 1920’s [2] for studying ordinary
differential equations with almost-periodic coefficients. Since that time limit operators
have been used in context with partial differential and pseudo-differential operators and
in many other fields of numerical analysis (see [3]). The Fredholmness of elliptic differ-
ential operators in spaces of functions on Rn has been studied by Muhamadiev in [8],
[9], and by Rabinovich in [10]. The first time limit operator techniques were applied
to a class of band-dominated operators was in 1985 by Lange and Rabinovich in [4]
and [5].

During the last years the set of limit operators at θ = ∞ has been studied for
the whole class of band-dominated operators in most of the spaces `p(Zn) and Lp(Rn)
with 1 ≤ p ≤ ∞. Typical applications are, for instance, the study of Fredholmness by
Rabinovich/Roch/Silbermann in [12]. Moreover, the latter three and the author
study invertibility at infinity in [13], [6] and the applicability of approximation methods
in [12], [13], [7].

In a somewhat different situation, Böttcher, Karlovich and Rabinovich in
[1] use limit operators to study the local behaviour of singular integral operators at
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the endpoint θ of a Carleson curve in the plane. However, we will here focus our
investigations on the case θ = ∞:

Take an arbitrary operator A on Lp(Rn), where 1 ≤ p ≤ ∞. Given a point θ ∈ Rn,
one might ask what A looks like from another “point of view”, for instance, the point θ
(taking the role of the origin in Rn). Well, for finite points θ the answer is just V−θAVθ

(where Vθ is a simple shift operator acting by (Vθu)(x + θ) = u(x) ∀x ∈ Rn) which is
still a very close relative of the operator A itself.

But what, if we ask for the point θ = ∞? Then θ can only be approached as the
limit of a sequence h of finite points hm, m = 1, 2, ..., and by doing the above process
for every one of these finite points hm, the answer for θ can only be understood in the
sense of some sort of limit of the sequence V−hmAVhm , m = 1, 2, ... as m goes to infinity.
And this is what we will call a limit operator. We will denote this limit operator by
Ah since it heavily depends on the choice of the sequence h = (hm).

So the behaviour of A at θ = ∞ can be expressed by a whole bunch of limit operators
{Ah}. We collect them in the so called operator spectrum which is denoted by σop(A).
In [6] Silbermann and the author prove that if a band-dominated operator A has
sufficiently many limit operators – we write A ∈ BDOp

$$ and regard A as a rich operator
in this case – it is invertible at infinity if and only if

❶ all of its limit operators are invertible and
❷ their inverses are uniformly bounded.

This is the typical result which was proven for the characterization of the properties
mentioned above in terms of limit operators. And as long as such criteria are known,
there was always one question:

May we drop condition ❷?

The reason for asking this question is that firstly, ❷ makes the derived criteria some-
what difficult – whence it is also referred to as “the nasty condition” by some authors
– and secondly, no example was known where condition ❷ was not redundant.

The aim of this paper is to prove that indeed, in the cases p = 1 and p = ∞ the
answer is “Yes” – the more beautiful but less expected one of the two possible answers!

2 Preliminaries

2.1 Basic agreements

By `p and Lp we denote the usual spaces of complex-valued sequences on Zn and
functions on Rn, respectively. The Lebesgue parameter p is in [1,∞], as usual, and the
dimension n is some fixed positive integer.

For τ ∈ Rn, let Vτ denote the so called shift operator on Lp, acting by the rule
(Vτu)(x) = u(x − τ) for every u ∈ Lp. Without introducing a new symbol, we will
say that Vα is the shift operator on `p, shifting by α ∈ Zn components, i.e. acting by
the rule (Vαu)β = uβ−α on every u ∈ `p.
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Let Mb denote the operator of multiplication by the bounded function b. For every
measurable set U ⊂ Rn, PU is the the operator of multiplication by the characteristic
function of U . Clearly, PU is a projector. We will refer to its complementary projector
I − PU by QU .

2.2 Pre-Adjoints

For some technical reasons it is sometimes necessary to pass to the adjoint operator
of A ∈  L(Lp). This is usually an operator in  L(Lq) with 1/p + 1/q = 1. The only
exception is p = ∞ since the dual space of L∞ is strictly larger than L1. In this case
we will do the following:

We will restrict ourselves to operators A ∈  L(L∞) whose adjoint operator A∗ maps
L1-functions to L1-functions. Let us denote this set of operators by S∞,

S∞ :=
{

A ∈  L(L∞) : A∗(L1) ⊆ L1
}

.

If A ∈ S∞, the restriction B := A∗|L1 , seen as operator in  L(L1), has the property
B∗ = A, whence we regard B as the pre-adjoint operator of A – the operator whose
adjoint equals A.

If p < ∞, we will think of Sp as the whole algebra  L(Lp). In either case, if A ∈ Sp,
we will write A∗, where we mean the adjoint if p < ∞, and the pre-adjoint if p = ∞.

Proposition 2.1 Sp is an inverse closed Banach subalgebra of  L(Lp).

For p < ∞ this is clear and for p = ∞ see [6, Section 2.4].

2.3 Band- and band-dominated operators

An operator A ∈  L(`p) is a band operator if its matrix representation with respect to
the standard basis in `p is a band matrix.

The set of band operators clearly turns out to be an algebra – but it is not closed.
Hence, it is a natural desire to compute its closure with respect to the norm in  L(`p),
which is a Banach algebra then. The elements of the latter are called band dominated
operators.

Put H := [0, 1)n and Hα := α + H for every α ∈ Zn. Every function f ∈ Lp can
be identified with a Lp(H)-valued sequence in `p, the α-th component of which is just
the restriction of f to Hα. Via this identification, also every operator A on Lp can
be identified with an operator Ã on Lp(H)-valued `p, and we will regard A as band
(dominated) if and only if Ã is so.

We will denote the Banach algebra of band-dominated operators on Lp by BDOp

and its intersection with Sp by BDOp
S (which is a Banach algebra as well by Proposition

2.1).
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2.4 Invertibility at infinity

As a very close relative of the Fredholm property, we will introduce the notion of
invertibility at infinity of an operator, which turns out to be a very useful property in
[6], [7] and [13] for instance.

Definition 2.2 A ∈ BDOp is said to be invertible at infinity if and only if there exist
operators B1, B2 ∈ BDOp and a bounded and measurable set U ⊂ Rn such that

QUAB1 = QU = B2AQU .

By [6, Prop. 2.22], this definition is compatible with that given in the articles cited
above.

2.5 P-convergence

By P we will denote the collection of all projectors PU with U running through all
bounded and measurable subsets of Rn.

Definition 2.3 We say that a sequence (Aτ ) ⊂  L(Lp) P−converges to A ∈  L(Lp) if

‖PU(Aτ − A)‖ → 0, ‖(Aτ − A)PU‖ → 0 as τ →∞

for all PU ∈ P.

It is readily seen that a P-limit is unique if it exists. Moreover, the properties of
P-limits are very similar to those of strong limits:

Proposition 2.4 Let (Aτ ), (Bτ ) ⊂ BDOp be bounded sequences with P-limits A, B ∈
BDOp, respectively. Then

a) ‖A‖ ≤ lim inf ‖Aτ‖ ≤ sup ‖Aτ‖ < ∞,
b) P−lim(Aτ + Bτ ) = A + B,
c) P−lim(AτBτ ) = AB.

For a proof see [6, Sec. 2.7] for instance.

3 Limit operators

Definition 3.1 Let A ∈  L(Lp) and h = (hm) be some sequence in Zn, tending to
infinity. If the sequence

V−hmAVhm , m = 1, 2, ...

P-converges to some operator B ∈  L(Lp) as m →∞, then we call B the limit operator
of A with respect to the sequence h, and denote it by Ah. In this case, we will also say
that the sequence h leads to a limit operator of A.
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If h ⊂ Zn is a sequence tending to infinity such that Ah exists, and if g is an infinite
subsequence of h, then also g leads to a limit operator of A, and Ag = Ah.

Limit operators are compatible with addition, composition, passing to the norm-
limit and to A∗:

Proposition 3.2 Let A, B and A(m) (m = 1, 2, ...) be arbitrary operators in BDOp,
and let h ⊂ Zn be some sequence tending to infinity.

a) If Ah exists, then ‖Ah‖ ≤ ‖A‖.
b) If Ah and Bh exist, then (A + B)h exists and is equal to Ah + Bh.
c) If Ah and Bh exist, then (AB)h exists and is equal to AhBh.
d) If ‖A(m) − A‖ → 0 as m →∞, and the limit operators (A(m))h exist for

sufficiently large m, then Ah exists, and ‖(A(m))h − Ah‖ → 0 as m →∞.

This proposition is taken from [12]. It is a simple consequence of Proposition 2.4. The
following proposition is proven in [6, Sec. 2.8].

Proposition 3.3 If A ∈ BDOp, then all limit operators of A are in BDOp as well.

The set of all limit operators of A is denoted by σop(A), and we refer to it as the
operator spectrum of A.

This set contains all limit operators Ah of A, regardless of the direction in which
h tends to infinity. But sometimes this information is significant, and so we will split
σop(A) into many sets – the so called local operator spectra:

Definition 3.4 Let Sn−1 denote the unit sphere (w.r.t. the Euclidian norm |.|E) of
Rn. Let s ∈ Sn−1. Then we say that a sequence h = (hm) ⊂ Zn tends to infinity in
the direction s if for every R > 0 and every neighborhood U ⊂ Sn−1 of s there is a m0

such that
|hm|E > R and hm/|hm|E ∈ U for all m > m0.

The local operator spectrum σop
s (A) is defined as the set of all limit operators Ah with

h tending to infinity in the direction s.

Then it is not surprising that

Proposition 3.5 For every operator A, the identity

σop(A) =
⋃

s∈Sn−1

σop
s (A)

holds.

For a proof see [12] or [6].
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4 Removing the “Nasty Condition”

4.1 Invertibility at Infinity vs. Limit Operators

It is not very hard to show that if A is invertible at infinity, then all its limit operators
are invertible. The reverse is not true in general because an operator might possess
“too few” limit operators to cover all its behaviour at infinity. Therefore we have to
restrict ourselves to a subclass of operators which possess enough limit operators for
this purpose:

Definition 4.1 By BDOp
$$ we denote the set of all operators A ∈ BDOp

S with the fol-
lowing property: Every sequence h = (hm) ⊂ Zn with hm →∞ possesses a subsequence
g which leads to a limit operator of A. We will regard operators in BDOp

$$ as rich
operators.

BDOp
$$ is a Banach subalgebra of  L(Lp), as is shown in [12]. This property is indeed

strong enough to link the concepts of invertibility at infinity and of limit operators to
each other by the following theorem:

Theorem 4.2 An operator A ∈ BDOp
$$ is invertible at infinity if and only if the oper-

ator spectrum of A is uniformly invertible, that is,

❶ all of A’s limit operators are invertible and
❷ their inverses are uniformly bounded.

Theorem 4.2 was proven for `p with 1 < p < ∞ in [12], for L2 in [13] and for the
remaining cases `p and Lp with 1 ≤ p ≤ ∞ in [6].

As promised in the introduction, we will show in the rest of this article that the
“nasty condition” ❷ is redundant if p ∈ {1,∞}. To see this we first have to take some
closer look at the topological properties of the set of limit operators of a rich operator.

4.2 Topological Properties of the Operator Spectrum

In the following, C stands as an abbreviation for the hypercube [−1, 1]n.

In [12] the operator spectrum is shown to be closed with respect to the operator
norm. By a slight modification of the proof even the following can be shown.

Proposition 4.3 For every A ∈ BDOp every local as well as the global operator spec-
trum of A is closed with respect to P-convergence.

Proof. We will give the proof for the global operator spectrum. It is completely
analogous for local operator spectra.

Given a sequence A(1), A(2), ... ⊂ σop(A) which P-converges to B, we will show that

also B ∈ σop(A). For k = 1, 2, ..., let h(k) = (h
(k)
m ) ⊂ Zn denote a sequence such that
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A(k) = Ah(k) , and put Pm := PmC . We clearly can choose a subsequence g(k) out of h(k)

for every k = 1, 2, ... such that

‖Pm(V−g
(k)
m

AV
g
(k)
m
− A(k))‖ <

1

m
∀m = 1, 2, ...

holds. Now we put g = (gm) := (g
(m)
m ) and show that B = Ag. Therefore take some

arbitrary bounded and measurable subset U ⊂ Rn and some ε > 0. If m0 is large
enough that U ⊂ m0C, then PU = PUPm ∀m ≥ m0, and so

‖PU(V−gmAVgm −B)‖ ≤ ‖PUPm(V−gmAVgm − A(m))‖+ ‖PU(A(m) −B)‖
≤ ‖PU‖ ‖Pm(V−g

(m)
m

AV
g
(m)
m

− A(m))‖

+ ‖PU(A(m) −B)‖
≤ 1 · 1/m + ‖PU(A(m) −B)‖ ∀m ≥ m0

clearly tends to zero as m →∞. The same is true for PU coming from the right, and
so we have B = Ag ∈ σop(A).

Definition 4.4 Fix an arbitrary operator A ∈  L(Lp). Operators of the form V−cAVc

with c ∈ Zn will be called shifts of A, and the set of all shifts of A will be denoted by
VA,

VA := {V−cAVc }c∈Zn .

A very easy but important proposition is the following.

Proposition 4.5 If Ah is a limit operator of A, then for every c ∈ Zn, also V−cAhVc

is a limit operator of A which is contained in the same local operator spectrum of A as
Ah is.

Proof. Let h = (hm) ⊂ Zn denote the sequence leading to Ah, and take some arbitrary
constant c ∈ Zn. Then the sequence h + c := (hm + c) ⊂ Zn leads to

Ah+c = P−lim V−cV−hmAVhmVc = V−c(P−lim V−hmAVhm)Vc = V−cAhVc.

Clearly, h + c tends to infinity in the same direction as h does.

So the operator spectrum is closed under shifting and under passing to P-limits.
The same is true for local operator spectra. As a very nice by-product, we conclude:

Corollary 4.6 Every limit operator of some limit operator of A is already a limit
operator of A itself.

In other words: No further operators occur when repeatedly passing to the set of
limit operators.

We will continue with a slight – but very natural – reformulation of an operator’s
“rich” property. As usual, we will say that a set L of operators is (relatively) sequen-
tially compact with respect to some operator topology T if every infinite sequence from
L has a subsequence with T -limit (which is not necessarily) in L.
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Proposition 4.7 An operator A ∈ BDOp
S is rich if and only if VA – the set of all

shifts of A – is relatively P-sequentially compact.

Proof. If VA is relatively P-sequentially compact, then all infinite sequences from VA

– including those with c tending to infinity – possess a P-convergent subsequence.

If conversely, A is rich, then every sequence from VA with c tending to infinity has a
P-convergent subsequence. All other sequences h ⊂ VA have an infinite subsequence g
such that all c involved in g are in some bounded set U ⊂ Zn. Since U has only finitely
many elements, there is even an infinite constant subsequence f of g. Summarizing
this, every sequence h in VA (with c tending to infinity or not) has a P-convergent
subsequence, i.e. VA is relatively P-sequentially compact.

As trivial Proposition 4.7 seems, it opens the door to seeing rich operators and
their operator spectra in a somewhat different light. For instance, we just have to
recall Proposition 4.3 to find and prove the following interesting fact:

Proposition 4.8 For every rich operator A ∈ BDOp
$$, every local as well as the global

operator spectrum of A is P-sequentially compact.

Proof. If A is rich, then, by Proposition 4.7, VA is relatively P-sequentially compact.
Consequently, P-closVA is P-sequentially compact. Clearly, σop(A) (as well as every
local operator spectrum of A) is a subset of the latter set. And as a P-closed subset (cf.
Proposition 4.3) of a P-sequentially compact set, it is P-sequentially compact itself.

4.3 Employing the P-Compactness of σop(A)

Proposition 4.8 is a first indication that the operator spectrum of a rich operator has
enough topological structure that condition ❷ can be dropped.

However, for ordinary operators the answer is “No”, as the following example shows:
Let (am)∞m=1 ⊂ [0, 1) be a sequence of pairwise distinct numbers. For every m ∈ N, put
Um := am + [0, 1]. So all these intervals Um differ from each other. Now put

Am :=
1

m
PUm + QUm , m = 1, 2, ...

and let A be the so called inflation operator of the sequence (Am) (arising from a con-
struction suggested by Roch), having all operators A1, A2, ... in its operator spectrum.

It turns out that the operator spectrum of A, besides A1, A2, ... (and shifts of those),
only contains the identity operator I (which is due to the choice of the intervals Um).
This set is elementwise invertible – but not uniformly since ‖A−1

m ‖ = m.

If this operator A were rich, then by Proposition 4.8, the sequence (Am) would have
some P-convergent subsequence which clearly is not possible due to the incompatibility
of the intervals Um. So in this example, A was just ordinary.
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4.3.1 1st try

Suppose we have some rich operator A whose operator spectrum is elementwise – but
not uniformly – invertible, i.e. ❶ holds, but not so ❷.

Choose a sequence A1, A2, ... from σop(A) such that ‖A−1
m ‖ → ∞ as m →∞. From

Proposition 4.8 we know that (Am) has some P-convergent subsequence with P-limit
B in σop(A) again.

The question springing to mind now is whether this operator B can be invertible
or not. (If not, this were some contradiction to B ∈ σop(A)!) Answer:

Although the norm-limit of a sequence whose inverses tend to infinity cannot be
invertible, the P-limit B can. For instance, the sequence

Am := PmC +
1

m
QmC , m = 1, 2, ... (1)

P-converges to the identity I as m →∞, although its inverses are growing like m.

4.3.2 Learning from this setback

The reason why the sequence (1) however could have an invertible P-limit, was that
those “parts” of Am which were responsible for the badly growing inverses, were “run-
ning away” towards infinity when m → ∞, and so they had no contribution to the
P-convergence and hence, to the P-limit B.

Luckily, we here have to do with operator spectra and those have one more nice
feature, stated in Proposition 4.5: We stay in σop(A) if we study appropriate shifts
V−cmAmVcm instead of Am, where every cm ∈ Zn shall be chosen such that the “bad
parts” of V−cmAmVcm cannot run away to infinity any longer and consequently must
have some “bad impact” on the P-limit B as well! The outcome of this idea is as
follows:

Theorem 4.9 The (global as well as every local) operator spectrum of an operator
A ∈ BDO∞

$$ is automatically uniformly invertible, provided it is elementwise invertible.

Proof. Let A ∈ BDO∞
$$ , and suppose σop(A) is elementwise invertible with some se-

quence (Am) ⊂ σop(A) such that ‖A−1
m ‖ > m for m = 1, 2, ...

Then for every m, there is an xm ∈ L∞ with

‖xm‖ = 1 and ‖Amxm‖ ≤
1

m
.

Now fix some bounded and measurable set U ⊂ Rn with U ⊃ C. Clearly, there are
translation vectors cm ∈ Zn such that

‖Pcm+Uxm‖∞ > 1/2 ‖xm‖∞ (= 1/2)
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holds for every1 m. Now put

ym := V−cmxm and Bm := V−cmAmVcm , (2)

which leaves us with

‖ym‖ = ‖V−cmxm‖ = ‖xm‖ = 1, (3)

‖PUym‖ = ‖PUV−cmxm‖ = ‖Pcm+Uxm‖ >
1

2
‖ym‖ (4)

and

‖Bmym‖ = ‖V−cmAmVcmV−cmxm‖ = ‖Amxm‖ ≤
1

m
. (5)

Moreover, by Proposition 4.5, the sequence (Bm) is in σop(A) again. So by Proposition
4.8, we can pass to a subsequence of (Bm) with P-limit B ∈ σop(A). For simplicity,
suppose (Bm) itself already be this sequence.

Now some of the “bad parts” of Bm are located inside U , and hence, they cannot
run away when m → ∞. In fact, now we can prove that the P-limit B has inherited
some “very bad parts” inside U – bad enough to make B non-invertible:

As an element of σop(A), the operator B is invertible by our premise. Consequently,
there is some constant a > 0 (for instance, put a := 1/‖B−1‖) such that

‖Bx‖ ≥ a‖x‖ ∀x ∈ L∞. (6)

Now fix some continuous function ϕ : Rn → [0, 1] which is identically 1 on C and
vanishes outside of 2C. By ϕr denote the function ϕr(t) := ϕ(t/r) for every r > 0. So
ϕr is supported somewhere in 2rC, while on rC it is equal to 1.

From A ∈ BDOp
$$ ⊂ BDOp, Proposition 3.3 and [6, Theorem 2.15] we know that the

norm of the commutator [ B , Mϕr ] tends to 0 as r →∞. Choose r large enough that
U ⊂ rC and

‖ [ B , Mϕr ] ‖ <
a

6
. (7)

Since Bm
P→ B, there is some m0 such that

‖P2rC(B −Bm)‖ <
a

6
∀m > m0. (8)

From Mϕr = MϕrP2rC and inequalities (7) and (8) we conclude that

‖BMϕr −MϕrBm‖ ≤ ‖BMϕr −MϕrB‖ + ‖Mϕr(B −Bm)‖
≤ ‖BMϕr −MϕrB‖ + ‖Mϕr‖ · ‖P2rC(B −Bm)‖

<
a

6
+ 1 · a

6
=

a

3
.

1 A typical L∞-argument. Lp is more sophisticated here since U has to be chosen sufficiently large,
where it is not clear if one U works for all xm.
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The latter shows that for every x ∈ L∞,

‖BMϕrx‖ ≤ ‖MϕrBmx‖ + ‖BMϕrx−MϕrBmx‖
≤ ‖MϕrBmx‖ + ‖BMϕr −MϕrBm‖ · ‖x‖

≤ ‖MϕrBmx‖ +
a

3
‖x‖ (9)

holds if m > m0. Taking everything together, keeping in mind that PU = PUMϕr , we
get:

a

2

(3)
=

a

2
‖ym‖

(4)
< a‖PUym‖ ≤ a‖PU‖ · ‖Mϕrym‖ = a‖Mϕrym‖

(6)

≤ ‖BMϕrym‖
(9)

≤ ‖MϕrBmym‖+
a

3
‖ym‖

(3)

≤ ‖Mϕr‖ · ‖Bmym‖ +
a

3
· 1

(5)

≤ 1 · 1

m
+

a

3

If we still subtract a/3 at both ends of the chain, we arrive at

a

6
≤ 1

m
∀m > m0

which is perfectly contradicting a > 0.

“Well, we’ve knocked the bastard off!”
Edmund Hillary on May 29, 1953

So in L∞ the answer is: “Yes, we may drop ❷!”
Clearly, the same proof works for `∞. Moreover, if A is a rich operator on L1 (or `1),
then we know that A∗ is a rich operator on L∞ (or `∞), and the operator spectra
σop(A) and σop(A∗) can be identified elementwise by taking (pre-)adjoints. Since this
identification clearly preserves elementwise and uniform invertibility, we are done with
L1 and `1 as well.

4.4 Personal remark

Having presented the news to some specialists of the subject, one of them recognized a
characteristic argumentation in its proof and indeed found it in some part of the proof
of a theorem on the so called Wiener algebra in [11]. This step shows that Theorem
4.9 holds in `∞ for operators in the Wiener algebra. Looking a bit deeper, it turns out
that membership in the Wiener algebra actually nowhere is needed in this particular
step of the proof!

So afterwards, it turned out that a (quite – but not completely – different) almost
complete proof of Theorem 4.9 in the case of `∞ had been within reach for several
years. One reason why this was not realized, clearly is accidentally associating this
result with the Wiener algebra only – where it was stated in [11]. From another point
of view, it is quite understandable why Theorem 4.9 was not explicitly stated for `∞

that time: This is some quite breadless art if one does not have Theorem 4.2 for p = ∞.

However, the huge bastard, still to be knocked off, is Lp (or `p) with 1 < p < ∞.
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