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Summary

The paper formulates and analyses specific forward and inverse option pricing problems for
the purely time-dependent case, which seems to be rather academic, but provides some interesting
insight concerning the role of smoothness and no arbitrage of option data for the identification of
local volatility functions. Forward and inverse problems under consideration here can be written
by using Nemytskii operators based on Black-Scholes functions. In this context, the inverse
option pricing problem consists in solving a nonlinear operator equation in Banach spaces of
functions defined on a finite time interval. The solution process is decomposed into solving an
outer nonlinear operator equation by inverting the associated Nemytskii operator and solving an
inner linear operator equation by differentiation. In contrast to the ill-posed inner linear problem
of differentiation the outer nonlinear problem is proved to be well-posed in spaces of continuous
and integrable functions. This also implies well-posedness of the forward problem in C-spaces.
Ideas for a discrete approach and some numerical case studies complete the paper.

MSC 2000 Subject Classifications:” 35R30, 91B24, 47H30, 65J20

1 Introduction

The past twenty years can be characterized as a very active period in developing and
trading of financial derivative securities in financial markets. This was the reason for
an extremely growing interest in derivative pricing theory as a modern part of Financial
Mathematics. Stochastic calculus could be applied successfully for the fair price calcu-
lation of options and other financial derivatives in arbitrage-free markets. There occur
direct and inverse problems in the mathematical treatment of derivative valuations. On
the one hand, the calculation of option prices provided that the required parameters of
the underlying stochastic asset price process are known is a forward (direct) problem. On
the other hand, problems of determining process parameters like volatility from observed
option prices are of inverse nature. We will consider here such an inverse problem aimed
at finding a time-dependent volatility function in the context of the valuation of European
vanilla call options on a stock or a stock index. Call options, which we always assume
to be issued at time ¢t = ¢* := 0, are contracts that gives the owner the right to buy an
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amount of the underlying asset (stock or index certificate) for a fixed price K > 0 (strike
or exercise price) at the time to expiry (maturity) t = T > 0 of the option. For our
mathematical considerations we assume for all T' € (0, 7] the existence of options with
such maturities. This is an idealization, since in real markets for a fixed asset and a fixed
strike price K options are available only for a discrete number of maturities. However,
this idealization will provide some new insight into the structure of option prices in our
time-dependent case.

Neglecting the role of dividends the option price u at time t = to (0 < 2o < T) is
a function of the current time o and the corresponding price X = X(fo) > 0 of the
underlying asset, moreover of the strike K, the expiriy T, the risk-free interest rate r 2 0
and of the nonnegative volatility function o(t) (to < t < T) measuring the asset risk.
The volatility o(t) expresses the instantaneous standard deviation of the expected asset
returns at time ¢. Under the arguments of u the function o is the only argument, which
is not directly observable on the market. In this paper we will not consider the more
general model of option pricing, where o also gets a function of the current asset price
X = X(¢t) (see, e.g., Reference [5]). If the value of o(to) is estimated from a sample of
asset prices X (t) (t < to), then it is called historical volatility. On the other hand, we
call an estimation of o(ty) implied volatility, if it reflects the current market expectation
concerning the asset returns. Both variants have deterministic character. In the literature
(see, e.g., Reference [13]) there also occur approaches of stochastic volatilities, where
o(to) itself is assumed to be random. In the sequel we only consider deterministic time-
dependent functions o(t) (0 < t < T) and call them local volatility functions. These
functions are to be predicted from option price data u at the initial time ¢* = 0 by solving
an inverse problem (see also [2], [6], [7] and [8]). If the local volatility functions are known,
then they allow us to compute a wide class of option prices u(X, ) for different asset prices
X, strikes K and maturities T by solving forward problems. In this context, the value
u(X,t) ((X,t) € (0,00) x [0, T]) expresses the option price at time ¢, which corresponds to
the price X = X (t) of the underlying asset at the same time. For simplicity, we omit here
the arguments K, T, 7 and o in the list of u considering these parameters to be constant
scalars and functions.

The paper is organized as follows: In the remaining part of the introduction we for-
mulate for time-dependent local volatilities the option price formula using Black-Scholes
functions and give definitions for the corresponding inverse and forward problems of option
pricing. Both classes of problems can be written based on specific Nemytskii operators
the properties of which are summarized in Section 2. In this context, the inverse problem
consists in solving a nonlinear operator equation in Banach spaces of functions defined on
a finite time interval. The solution process is decomposed into solving an outer nonlinear
operator equation by inverting the associated Nemytskii operator and solving an inner
linear operator equation by differentiation. Section 3 is dealt with the solution of the
inverse problem for arbitrage-free smooth option data in spaces of continuous functions,
whereas Section 4 considers the inverse problem solution with noisy data in LP-spaces. In
contrast to the ill-posed inner linear problem of differentiation the outer nonlinear prob-
lem is proved to be well-posed in spaces of continuous and integrable functions. This also
implies well-posedness of the forward problem in C-spaces. Ideas for a discrete approach
will be discussed in Section 5 including some numerical case studies aimed at identifying
the volatility term-structure from computer-generated option price data.

Widely accepted option pricing principles as the basis of modern Financial Engineering
go back to the seminal papers [4] and [19] of Fisher Black, Myron Scholes and Robert



Merton published in 1973. The created Black-Scholes model (for details see [14] and [21])
is based on a geometric Brownian motion as the stochastic process for the asset price
X(t) > 0. With constant drift u, time-dependent volatilities o(t) and a standard Wiener
process B(t) the stochastic differential equation

dX(t .

T(t)) = pdt + o(t) dB(t) (t >0), X(0):=X*>0 (1)
holds. For a European call option with strike K and maturity T it follows from stochastic
considerations that fair option prices u(X,t) on arbitrage-free markets satisfy the Black-
Scholes differential equation

28D | Lxrar U050 xR0 =0 (1) € (0,00) x (0,1)).
)

Moreover, the payoff at expiry yields the terminal condition
w(X,T) = max(X — K, 0). (3)

If 6(t) = const. > 0 (0 < t < T), then well-known Black-Scholes formula expresses
the solution of the backward parabolic problem (2) — (3). For an almost everywhere
nonvanishing Lipschitz continuous function o(¢) > 0 (0 < ¢ < T') the uniquely determined
classical solution of problem (2) - (3) obtaines the form

u(X,t) = X 8(dy) — Ke7"T9®(d,)  ((X,t) € (0,00) x [0,T)) (4)

with
X - 1T 2
7= In (K) +7*(TT t)+ 5 J; o*(1) dT, 5 d— /TO'2(T) " 5)
fi o%(r)dr t

and the cumulative density function of the standard normal distribution

®(z) = —\/—%_7; / e 7 dz. (6)

A complete proof of the modified Black-Scholes formula (4) — (6) is given, for example, by
Kwok [16, p.71/72|. This formula remains true expressing a weak solution of the problem
(2) - (3), if the a.e. nonvanishing local volatility function o(¢) > 0 (0 < ¢t < T') is at least
square-integrable.

For parameters X > 0, K > 0,7 > 0,7 > 0 and s > 0 it is useful to introduce the
Black-Scholes function

X(I)(dl) - KE_TT@(dQ) (S > 0)
Ups(X,K,r,7,8) := (7)
max(X — Ke™",0) (s =0)
with
In (%) +r7 + —;—

\/g 3

d1 = d2 = d1 — \/E (8)



and ®(.) from formula (6). In terms of the continuous auxiliary function
T
swy=/&@ﬁ ©<T<T) 9)
0

the solution of (2) — (3) can be written concisely as

w(X,t) = Ups(X, K,n, T = ,S(T) = S())  ((X,?) € (0,00) x [0,T]).  (10)

Now we are going to formulate a pair of specific inverse and direct problems in the
time-dependent case. In both problems we consider prices u of option families, for which
the maturity 7T is continuously varying between zero and the upper bound T'.

At the initial time t* = 0 we observe option prices for a fixed strike K~ and try to
identify the non-observable local volatility function o(t) (0 <t < T). That means, we
predict the volatility term-structure by solving the following inverse problem:

Definition 1.1 (Inverse Problem - IP) At time t* =0 let be given call option prices
T

w*(T) := Ups (X*,K*,r*,T,/aQ(t) dt) = Ups (X*, K*,v*,T,5(T)) 0<T<T)
0

for a fized current asset price X* = X(0) > 0, a fized interest rate v* > 0, a fized
strike price K* > 0 and varying maturities T Find the associated square-integrable local
volatility function a(t) (0 <t < T) of the underlying asset.

If the local volatility function o(t) (0 < t < T') has been determined, then we can predict
option prices for times £ > t* and arbitrary strike prices K > 0 by solving the following
forward problem:

Definition 1.2 (Forward Problem -AFP) Given the square-integrable local volatility
function o(t) (0 <t <T), find at time t with 0 <t < T the call option prices

— . T —~ —
a(T) = Ups (X, K,7, T -1, [d(t) dt) = Ups (X, K,7T—-1t8(T)— S(a)
t - —
F<T<T)

for a current asset price X = X(), a fized interest rate 7 > 0, @ fized strike price K>0
and varying maturities T.

2  Black-Scholes function and Nemytzkii operators

We first summarize the main properties of the Black-Scholes function Ugs according to
the formulae (7) — (8). The results of the following lemma can be proven straightforward
by elementary calculations.



Lemma 2.1 Let the parameters X > 0, K > 0 and r > 0 be fired. Then the func-
tion Ugs(X, K,r,7,s) is continuous for (1,s) € [0,00) X [0,00). Moreover, for (r,s) €
[0, 00) x (0,00), this function is continuously differentiable with respect to T, where we
have

OUps(X, K,r,T,5)
or.

and continuously differentiable with respect to s, where we have

oUps(X, K,r,7,8)
ds

=rKe 7 ®(dy) >0, (11)

- @'(dl)x2—\1/§ >0, (12)

Furthermore, we find the limit conditions

oo (X=Ke™™)
].111(1) 6UBS(X5K, T, S) — and ILIEO UBS(X, K, T, S) = X.
s* 5 0 (X#Ke™) °
(13)
On the other hand, the partial derivative
X
aUVBS( ,K,T‘,T,S) — —E—TT@(dz) <0 (14)

0K

ezists and s continuous for (1, s) € [0,00) X (0, 00).

The Black-Scholes function Ugg helps us to express Nemytskii operators, which occur
both in the inverse problem (IP) and in the forward problem (FP) of option pricing. For
fixed X > 0, K > 0 and r > 0 we define a Nemytskii operator

N =NX%r. Dpf — DF
mapping the domain DI of nonnegative real functions on the interval [0, 7] into itself:
[N@)I(r) = [NE57(0)] (1) = k(r,0()) = Ups(X, K, 7,0(r)) (0<7<7). (15)

From formula (12) of Lemma 2.1 we obtain %%f) > 0 for all (1,s) € [0,7] x (0,00) and
hence the following lemma.

Lemma 2.2 The Nemytskii operator N = NXE7 defined by formula (15) is injective on
its domain DF.

From Lemma 2.1 it follows that the function k(r,v) := Ups(X, K, r, T, v) generating
the Nemytskii operator N is continuous and uniformly bounded with |k(7,v)| < X due to
the formulae (12) and (13) for all (7, v) € [0,7] %[0, 00). Then Krasnoselskii’s Carathéodory
condition and growth condition (see [17, Chap. 17] or [22, Th. 25.2, p.92]) hold and we
have continuity of N between spaces of power-integrable functions on the interval [0, 7]
as the following lemma asserts.

Lemma 2.3 The Nemytskii operator er( K with domain D N LP(0,7) maps continu-
ously from L*(0,7) into L4(0,7T) for all 1 < p,q < oc.



As obvious throughout this paper we denote by L#(a,b) (1 <p < o0) the Banach space of
1/p

integrable real functions z(t) (a < t < b) with a norm ||z{|Lr(ap) := (} |z(t)|P dt < 00
and by Cla, b] the Banach space of continuous functions z defined on a[a, b] with the norm
Ilotan == max [=(2)].
If we restrict the domain of N to the set
D2 = {veC0,7]: v(0)=0,uv(r) 20(0 <7< )},
then because of Lemma 2.1 we have
N = NX%r. plc clo, 7] — Df nClo,7,

i.e., N transforms nonnegative continuous functions vanishing at 7 = 0 to nonnegative
continuous functions. Using the substitutions w := \/g as well as k(T,w) := k(7,v) we
obtain for all 7 > 0 and w > 0
Ok(T,w)
ow

- ln(%)+7(r+“’72)
dy = T .

Consequently, for v, € D¢ with v(r) = 7w?(7) and 9(7) = T1w?(7), there are pointwise

_ iy o XANT
= X T¥(d) < N

0<

with

estimations
Wl - e <[ 2 2w - i 0<r<m)
with an intermediate value w, between w(r) and w(r) and
NI - V@I € o= o) - Vi @<r<m (9

From (16) we directly obtain:

Lemma 2.4 The Nemytskii operator N-TZ( K with domain DS maps continuously from
C[0,7] into C[0, 7).

Now we can represent the problems (IP) and (FP) via Nemytskii operators based on
the Black-Scholes function Ugg. We denote by By, By and Bj appropriate Banach spaces
of functions defined on the interval [0, T). Then the inverse problem (IP) consists in solving
a nonlinear operator equation

F(o%) == N (I(¢?) = (¢* € D C By, w* € Dp C By), (17)

where the nonlinear operator F' : D% C B; — B, is decomposed into an inner linear
Volterra integral operator I : By — Bj with

T
I@)T) = [wir)dr  (0<T<T) (18)
0
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and an outer nonlinear Nemytskii operator N = NEET D% C B3 — By. Note that
our decomposition F(-) = N(I(-)) is reverse to the situation in [18, Chap. 7.5], where

composite operators F'(-) = A(N(:)) with an inner Nemytskii and an outer bounded
linear operator A are analysed.

The problem of solving the operator equation (17) can be decomposed into solving,
successively, the nonlinear outer operator equation

N(S) = u* (Se€DfCBs, u €DECB) (19)
and the linear inner operator equation
I(6®) =8 (c*e€ D} C By, S€ DE C By). (20)

In order to get a square-integrable local volatility function ¢ from equation (20), S has
to be an absolutely continuous function belonging to the set

DZ := {SeC0,T]: S(0)=0, S(t1) < S(ta) (0<t1 <t <T)}.

Solving the forward problem (FP) corresponds with the application of a Nemytskii
operator to the solution S € DZ of the outer problem (19) in the form

= %(_’Itf’r v, where v(7):=8(F+7)-S@%) 0<7<T-1%). (21)
For solving the problem (FP), it is sufficient to know the function .S defined by (9), whereas
the local volatility function o(t) (0 < ¢ <T) is not used explicitly. Hence, providing data
for the direct problem requires only to solve the outer equation (19). This is an advantage,
since the inner equation (20) aimed at finding the derivative o2(t) = S'(t) (0 <t < T) of
the function S is ill-posed in usual Banach spaces B, and Bj of integrable or continuous
functions on the interval [0,7] and leads to ill-conditioned problems after discretization
(see, e.g., [10]). In the Hilbert space setting B; := Bz := L%(0,T) the differentiation
problem is weakly ill-posed and has an ill-posedness degree of one (see, e.g., [15, p.235]
and {12, p.33ff]).

On the other hand, in view of the continuity of the Nemytskii operator N (see
Lemma 2.4) the variant (21) of the forward problem that consists in finding the out-
put function % from a given input function S is well-posed in a C-space setting. That
means, 4 is well-defined for given S € D% and small errors in S imply only small errors in
u if we measure perturbations of input and output functions both in the maximum norm.

3 Solving the inverse problem in C-spaces for smooth
arbitrage-free option data

In this section we are going to solve the inverse problem (IP) for a given smooth function
u(T) (0 < T <T) of observed option price data that approximate the fair price function
u(T) = [F(o*®)](T) = [N(SY)](T) (0 < T < T) corresponding with the square-
integrable local volatility function o*(t) > 0 (0 <t <T) and S* := I(0*?).

For the data u we first pose the following assumption, which is a consequence of an
arbitrage-free market (see, e.g., [19]):



Assumption 3.1 The data function w(T) (0 < T < T) is assumed to be continuous and
strictly increasing with

u(0) = max(X* — K*,0), max(X*—K* " T,0)<u(T)<X* 0<T<T). (22)

Now the outer equation (19) attains here the form
[N(S)(T) = k*(T, S(T)) := Ups(X*, K*,r*, T, S(T)) = uw(T) 0<T<T). (23)

If there exists a solution S € D% of equation (23) for given data u, then from the injectivity
of the Nemytskii operators N (see Lemma 2.2) it follows that this solution is unique.
Moreover, the following theorem shows that we can even find a uniquely determined

function S € DY C C[0, T} satisfying (23).

Theorem 3.2 Under the Assumption 3.1 there ezists a uniquely determined continuous
function S(T) (0 < T < T) with $S(0) =0 and 0 < S(T) < S (0 < T < T) solving the
equation (23), where S satisfies the equation k*(0,S) = w(T) = [[ull g7

Proof: As a consequence of Lemma 2.1 the function k*(T,s) := Ups(X*, K*,r*,T,s)

. ok* ('1 ) ok* ('1 )
S S
i St s > nd i Sl S
oT 0 & Os >0

is continuous in both variables T and s, increasing with respect to 7' and stricly increasing
with respect to s for (T, s) € [0,T] x (0, 00). Moreover, we have for all T' € {0, 7]

h%k%TJ)zk%Tﬂ)=nmﬂX*—1F€$Tﬁ)<éggk%ﬂsy=X*

Since the data w with w(T) < w(T) (0 < T < T) satisfy the condition (22), from the
family of equations
k*(T,s) = u(T) (24)

in s, where the parameter T varies in the interval [0, T], we find in a unique manner values
s=S(T) > 0for all T € (0,T] and s = S(0) = 0 for T = 0 because of £*(0,0) = u(0).
The value S satisfying k*(0, S) = u(T') is also uniquely determined. From the estimation
E*(0,S(T)) < k*(T,S(T)) = w(T) < u(T) = k*(0,5) we get S(T) < S. Finally, the
continuity of the function S(T) (0 < T < T) follows from the implicit function theorem
(see, e.g., [9, p-421]) considering that k*(T), s) is continuous in both variables and stricitly
monotone with respect to s. This proves the theorem g

Note that for any maturity 7 > 0 the corresponding value S(T") only depends on the
option price u(T) and can be found easily by a line search solving the equation (24).
However, Theorem 3.2 based on Assumption 3.1 cannot ensure S € DZ, although the
monotonicity of S is required in order to find a nonnegative volatility function o from
equation (20). This gap can be closed by posing a further assumption:

Assumption 3.3 In addition to Assumption 3.1 the data function u(T) is assumed to be
continuously differentiable for 0 < T < T with

In (ﬁ) +r*T — ﬂzﬂ
S(T)

W(T) - K*r*e™Todd) >0 0<T<T), di: (25)

where u implies the function S € D%— via equation (28) in a unique manner.
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The condition (25) is also a consequence of an arbitrage-free market. Namely, by
comparing approriate porfolios it can be shown that option prices u at fixed time ¢*
considered as differentiable functions of strike price K and maturity T satisfy inequalities
of the form (see [1, p.11])

Ou Ju
- —_— > 0.
o TRk 2 ° (26)

For the inverse problem (IP) we have t* = 0 and u = Ugg(X*, K*,7*, T, S(T)), where
Ju du  9Ups(X*, K*,r*,T,5(T))

T : - _ —r*T *
57 = U (T) and with (14) 3K 5K e o (ds).

Consequently, the inequality (26) attains here the form (25).

Theorem 3.4 Under the Assumptions 3.1 and 3.3 the uniquely determined solution
S(T) >0 (0 < T <T) of equation (23) with S(0) = 0 is an increasing and absolutely
continuous function with a continuous and integrable deriwative S'(T) >0 (0 < T < T),

T _
where S(T) = [ S'(t)dt (0<T <T) and
0

1) = 2./S(T) [u/u; (;I,;{;:e—r*:r (d5)| >0 (@<T<T) )

with

In (%) + T + 50
dt = () 2 dy=di—4/S(D).
S(T)

Proof: Considering the formulae (11), (12) and (25) for 0 < T < T from the im-
plicit function theorem (see, e.g., [9, p.423fL.]) we obtain continuous differentiability of S
with S§’(T) > 0 and formula (27). Hence S(T') (0 < T < T) is increasing and based on
[20, Thms. 4 and 5, p.236f] we have an integrable derivative S’ € L'(0,T) with
T _

[S'(t)dt < S(T) — S(0) = S(T) (0 < T <T). Choosing ¢ from the interval 0 < e <T
0

we get

T €
/ () dt = / S'() dt + S(T) — S(e) = S(T)

&€

and absolute continuity of S, since [S'(t)dt — S(¢) is a constant and tends to zero as
0

¢ — 0. This proves the theorem g

As a consequence of Theorem 3.4 we obtain for arbitrage-free and sufficiently smooth
option data u(T) (0 < T < T) by solving equation (23) a function S € Dz, which is
continuously differentiable for positive 7" and provides a square-integrable local volatility
function

ot):= /S'(t) >0 (0<t<T). (28)

The function o(t) is continuous for ¢ > 0, but may tend to infinity as ¢ tends to zero.

The next theorem will show that solving the equation (23) for smooth arbitrage-free
data u as a variant of the operator equation (19) with Banach spaces Bj := B; := C[0,T]

9



is a well-posed problem. On the other hand, the problem of determining o? from S as
a variant of solving the operator equation (20) is ill-posed for spaces of continuous or
integrable functions on the interval [0, 7).

Theorem 3.5 Let {u, = N(S.)}32, with N according to (23) be a sequence of time-
dependent arbitrage-free noisy option price functions satisfying the Assumptions 3.1 and
3.8 that converges in the Banach space By := C[0,T) to the fair option price function
u* = N(S*). Then the associated sequence of functions {Sn}2, also converges to S* in

the Banach space By := C[0,T].

Proof: In view of the positivity and continuity of the partial derivative

Wps(X ’alj . T38) on the domain (T, s) € [0,T) x (0,00) (see Lemma 2.1) we have,

for fixed T € (0,7,

aUBs(X*, K*, T*,T, ST
0s

1S.(T) - 8°(T)] < ( )>— (M) — (D) (29)

with an intermediate value Sy between the positive values Sp(T") and S*(T'). Now, for
given sufficiently small € > 0 we choose T: € (0,7 such that S*(T:) = §. Since all the
data u,, and u* have to satisfy the condition (22), we find 0 < Symin < Smaz < 00 and a
positive integer n; depending on € such that

Smi'n, S Sn(T) S Smaz, Smin S S*(T) S Sma.z(T) (Ts S T S T, n Z nl)-

Then we obtain

152 = Sl < Clun—wlomm (2 mle))
with the constant
X* K* r* T ~1
C = max (aUBS( ) T 78)) .
(T,S) G[TE 7T] X [szn ySma.:c] 38

Moreover, there exists an integer no depending on € with
lun(T) — u*(T)| < 5%— (0<T<T, n>ny).

This provides

% £
182 = S™ ey < 5 (n > max(ni, n2))-

Using the growth of the functions S, and S* (see Theorem 3.4) and the triangle inequality
we get for n > max(ny, ns) the estimations

”Sn - S*”C[O,Ts] < Sn(Ts) + S*(TE) < ISn(Ts) - S*(Ts)‘ + 25*(T5) <5+

N ™

and
15n = S* |l <€

which prove the theorem 4

10



4 Solving the inverse problem in LP-spaces for
noisy option data

In this section we measure deviations of the time-dependent functions =, S and o on
the interval [0, 7] by means of LP-norms. For the Banach spaces of the inverse problem
(IP) written as an operator equation (17), which is decomposed into the operator equa-
tions (19) and (20), there are used B; := L*(0,T), B, := L(0,T) and B; := L?(0,T)
with 1 < p,q < oo. The positive function u®(T) (0 < T < T) of observed maturity-
dependent option prices is not necessarily smooth and arbitrage-free in the sense of As-
sumptions 3.1 and 3.3, but it satisfies the Assumption 4.1.

Assumption 4.1 We assume to know an upper uniform bound @ > 0 of the nonnegative
square-integrable local volatility function o* implying the auziliary function S* := I(c*?)
such that

0<o*(t) <7, 0<S*(t)<wk=Te (0<t<T). (30)

Moreover, the positive data function u® € L1(0,T) (1 < ¢ < oo) approzimates with the
estimate
”u6 - U*”Lq(o,T) <9é (31)

the fair option price function u* = F(c*?) = N(S*) for a given noise level § > 0.
So we can apply a variant of the method of d-quasisolutions exploiting the fact that
Di:={SeDf: 0<8S(t)<k(0<t<T), S(t1) <S(ts) (0t <t <T)}

is a compactum in the Banach space LP(0,T) (1 < p < 00). As an approximate solution
of the outer problem (19) we use a d-quasisolution associated with the data u®, which is
a minimizer S¢ € D7 of the extremal problem

||IN(S) — u5||Lq(O’T) — min, subject to S e Dx. (32)
If we measure the distance of two functions z,y € DZ in a uniform metrics on a subinterval
[a,b] C [0, T, the symbol ||z — yllcray := sup |z(t) — y(t)] will be used.
t€(a,b]

Then we can prove the following convergence assertion:

Theorem 4.2 Let S% be a sequence of 6,-quasisolutions associated with a sequence of
data u satisfying the inequality (31), where 6, — 0 as n — oco. Then the convergence
properties

lim [|5* = |l ooy = 0O (33)
and _
Jim |S% — S*|icjo,y = 0 forall 0<vy<T (34)
hold.

Proof: Since the Nemytskii operator
N =NZ"KY" . DEc 170, T) — L%(0,T)

11



is injective and continuous (see Lemmas 2.2 and 2.3), we obtain the first limit condition
(33) immediately from Tikhonov’s theorem on the continuity of the inverse of an operator,
which is injective, continuous and defined on a compactum (see, e.g., [3, Lemma 2.2]).
Moreover, from [3, Theorem 2.8] based on the continuity of the function S* we can for-
mulate a further limit condition

nli_r&HS‘S“ — $*|loppy = 0 forall 0< B<y<T, (35)

where the approximate solution S € D7 may have discontinuities. Using the triangle
inequality and the growth of the functions S* and S% we find

15 — $*loppa < S™(8) + 5°() < 15™ — S"llcta +257(6)

for arbitrarily small values 8 > 0. For any given € > 0 there is a value Bo > 0 such that

S*(B) < §, since }’in}) S*(8) = 0. For sufficiently large n we moreover have with (35)

115% — S*|lcigom < § and hence 155 — S*||cpoy < & This implies the limit condition (34)
and proves the theorem 4

As is well-known, the quasisolution method does not provide convergence rates. That
means, the convergence (33) may be arbitrarily slow even on any subinterval. In particular,
the Li-data u® do not allow pointwise error estimations as given in formula (29). Moreover
note that D%NL* (0,T) fails to be a compactum in the Banach space L>(0,T). Therefore
the uniform convergence of approximate solutions S to S* cannot be shown on the whole
interval [0,T]. In contrast to monotonicity requirements the nonnegativity alone is not
able to stabilze the solution process of an ill-posed problem. Therefore, the reconstruction
of o? € L'(0,T) from data S° € L7 (0, ) by solving the inner equation (20) remains here
again the unstable part in solving the inverse problem (IP).

5 The discrete approach and some case studies

Now we are going to address to the realistic situation of financial markets that we have
option data u; = v (T;) approximating fair prices u} = u* (T;) only for a discrete set of
maturities To =0<Th <Tp < ... < T, = T. We assume according to formula (22)

up = max(X* — K*,0), max(X* — K* D) <uy <XT (§= 1,2,..,k).  (36)

Using the decomposition F(o?) = N (I(z)) = u with = := o2 we will consider a dis-
crete approach for solving the inverse problem. In the first step we determine a vector
S =(S,...,5)" € ]R"_‘F of nonnegative components by solving the nonlinear equations

UB,5<X*,K*,7’*,TJ‘,SJ')=’U,J' (j=1,2,k) (37)
Fach of these k equations can be solved by a simple line search algorithm. Since
Ups(X*, K*,7*,Tj, ) is strictly increasing with respect to s > 0, due to (12), (36) and
the second limit condition in (13) all values S; are uniquely determined from (37). The

second step contains a numerical differentiation, which is regularised according to

Lz - S|} + «l Lz||3 — min, subject to T € Rk, (38
+
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with a minimizing vector z° = (z$,...,28)7 € RE, where > 0 is the regulariza-

tion parameter, || - ||z denotes the Euclidean norm, I is a discretization of the linear
Volterra integral operator I and || z||2 expresses the obvious discretization of the L?-norm
square ||z ||%2(0 7y of the second derivative of the function z = 0. Finally we find with
0a(T}) == /25 (j =1,...,k) the estimated local volatilities.

For a case study with computer-generated option price data we use the values
X* =06, K* := 05,7 :=00517T;:=% (j =1,...,k := 20) and a convex volatil-
ity term-structure

o*(T):=(T -05)>+01, 0<T<T:=1

to be recovered. The exact data u* = (u},...,u})” are computed by using the modified
Black-Scholes formula (4) — (6). Perturbed with a random noise vector e = (e, ..., ex)” €
RF they yield the noisy data in the form
u* )
ujzzu;f+5”"”2ej (=1,...,k)

llell2
for a given relative error 4 > 0.

The case study results are presented by figures showing on the one hand the exact
solution as a solid line and on the other hand the linearly interpolated approximate solu-
tion as a dashed line. Figure 1 makes clear the oscillating character of the unregularized
volatility reconstruction, even if the data error is rather small with 0.1%. For the same sit-
uation a quite good regularized solution is presented by Figure 2, where the regularisation
parameter choice is based on Hansen’s L-curve criterium (see [11]). Asshown in Section 3,
arbitrage-free option data u yield in a unique and stable manner increasing functions S.
When, however, the noisy discrete option data u®(T}) are not necessarily arbitrage-free,
then also for very small § the monotonicity may be lost for values S(7}) obtained by a
pointwise inversion of the Nemytskii operator N. In particular, if the remaining term T
of the option is small, the corresponding values S(T;) tend to oscillate (see Figure 3).
This phenomenon is a consequence of the fact that S(7") tends to zero as T' tends to zero.
dUgs(X*,K*r* ,T,s)) -1

grows

8s s=Sy

Namely, as shown in Figure 4, the error factor (cf. (29)) (

to infinity as T tends to zero.
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