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The following result is well-known: If f ∈ X (X: some normed function
space) can be approximated of order ‖f−fn‖X ≤ c infgn∈Xn ‖f−gn‖X =
O(n−s−r) (r, s > 0 fixed) by elements f1, f2, . . . of certain subspaces
X1 ⊆ X2 ⊆ . . . for which the Bernstein inequalities ‖gn‖Y ≤ c nr‖gn‖X ,
gn ∈ Xn, hold true with some Banach space Y ↪→ X of smooth functions,
then ‖f − fn‖Y = O(n−s). (Usually, ‖f‖Y contains the norm of f and
some norm of f (r), so that ‖f − fn‖Y = O(n−s) means simultaneous

approximation of f and f (r) by fn and f
(r)
n , respectively.)

We show that this result remains true if the order O(a−1
n n−r) is con-

sidered instead of O(n−s−r), where an is strictly increasing and converges
to infinity faster than nε (in a certain sense). We also present similar
results in case

∑
(nr‖f − fn‖X)q(aq

n+1 − aq
n) < ∞ and in case of non-

classical Bernstein inequalities, where {nr} is replaced by some other
increasing sequence.

1. Introduction

Let X be a normed space and let X1 ⊆ X2 ⊆ X3 ⊆ . . . be linear subspaces
of X. (For the sake of simplicity we do not consider nonlinear Xn and/or spaces
X which are only quasi-normed. But this is also possible; see, e.g., [1] or [8].)
Let us further suppose that, with some Banach space Y ↪→ X, Y ⊇

⋃
Xn

(”↪→” means continuous embedding), the following Bernstein type inequality
holds true, where 1 = A1 < A2 < A3 < . . . are given positive numbers:

‖fn‖Y ≤ cAn‖fn‖X for fn ∈ Xn and n ∈ N (1.1)

where c 6= c(n, fn). (In the sequel we shall denote by c positive constants that
may have different values at different places. By c 6= c(n, f, . . . ) we will indicate
that c is independent of n, f, . . . .)

For fixed 1 ≤ q ≤ ∞, we consider the following question: Under which
conditions on a given sequence 1 = a1 < a2 < a3 < . . . , limn→∞ an = ∞, does
the approximation order ‖{an(q)AnEn(f)}∞n=1‖q < ∞ (‖ . ‖q: lq-norm), where

En(f) := inf
fn∈Xn

‖f − fn‖X , an(q) :=
{

(aq
n+1 − aq

n)1/q, 1 ≤ q < ∞,
an , q = ∞,



2 Simultaneous Approximation

imply that, for any sequence {fn}, fn ∈ Xn, with ‖f − fn‖X ≤ cEn(f),∥∥{
an(q) ‖f − fn‖Y

}∞
n=1

∥∥
q

< ∞ (especially, f ∈ Y )?

In the weighted lq-norms we use an(q) instead of an, since we want to consider
weights with ‖{an(q)}‖q =∞ which do not need to satisfy any monotonicity
condition (if q <∞). One can use the following equivalence to find out how an(q)
behaves: If an+1 ≤ can and an = a(n) with a ∈ C([1,∞)) ∩

⋂
k∈N C1[k, k + 1]

satisfying a′ > 0 and a′(ξ) ∼ a′(n + 0) for ξ ∈ (n, n + 1) and n ∈ N, then
an(q) ∼ an

[
(ln a)′(n + 0)

]1/q for all n ∈ N. (We write A ∼ B for n, ξ, . . . if
c1B ≤ A ≤ c2B with 0 < ci 6= ci(n, ξ, . . . ).) This follows from the mean value
theorem, applied to the difference aq(n + 1)− aq(n).

Let us explain why the answer to the above question is of interest and why
it is necessary to generalize the known classical result which asserts that the
implication is true if An = nr and an = ns (r, s > 0 fixed), i.e., that∥∥{

nr+s−(1/q)En(f)
}∥∥

q
< ∞ implies

∥∥{
ns−(1/q)‖f − fn‖Y

}∥∥
q

< ∞,

supposed that ‖f − fn‖X ∼ En(f) and (1.1) holds with An = nr.
(1.2)

In approximation theory one usually considers an Lp-space X, a Sobolev space
Y = W p,r, and Xn consisting of all polynomials of degree less than n. For
example, X = Lp

2π (2π-periodic Lp-functions), Y = W p,r
2π = {f : f (r) ∈ Lp

2π}
(‖f‖Y = ‖f‖p + ‖f (r)‖p), Xn = Tn = {trig. polynomials of degree < n}. Then
it is known that (1.1) holds with An = nr and one wants to know whether
ET

n (f)p := infTn∈Tn
‖f − Tn‖p = O(n−ra−1

n ) implies ‖f (r) − T
(r)
n ‖p = O(a−1

n )
for Tn ∈ Tn with ‖f − Tn‖p ∼ ET

n (f)p. This corresponds to the case q = ∞
of the above question. Also the case q < ∞ is of interest. For example, the
well-known Nikolskii inequality ‖Tn‖p2 ≤ c n(1/p1)−(1/p2)‖Tn‖p1 (p1 < p2) can
be interpreted as Bernstein type inequality with X = Lp1

2π, Y = Lp2
2π, and it

follows from (1.2) that, for s > (1/p1) − (1/p2), the Besov space Bs
q(Lp1

2π) ={
f ∈ Lp1

2π : ‖{ns−(1/q)ET
n (f)p1}∞n=1‖q < ∞

}
is embedded into the Besov space

B
s−(1/p1)+(1/p2)
q (Lp2

2π). To obtain embedding theorems for generalized Besov
spaces, one has to consider non-classical an. Generalized Besov spaces are
needed, for example, in the theory of Cauchy singular and related integral
equations (see [3, 5, 6, 7, 9, 10, 11, 12]). Numbers An different from nr appear
if one wants to study the mapping properties of an unbounded operator A ∈
L

( ⋃
Xn, X

)
: If ‖A‖Xn→X ≤ cAn, then (1.1) is satisfied with the completion

Y of
⋃

Xn w.r.t. ‖f‖ := ‖f‖X +‖Af‖X . Thus, if the above implication is true,
then A can be extended to an operator which maps the so-called approximation
space A(X, lq({Anan(q)}); {Xn}) :=

{
f ∈ X : {En(f)}∞n=1 ∈ lq({Anan(q)})

}
(endowed with ‖f‖X + ‖{Anan(q)En(f)}‖q; lq({bn}) = {{En} : {bnEn}∈ lq}

)
into A(X, lq({an(q)}); {A(Xn)}). This result is useful in the numerical analysis
of operator equations in which unbounded operators occur (see [10]).

The key to the answer of the above question is the following result, which is
a special case of [8, Theorem 2.2 and estimate (2.7)]. (Apply [8, Theorem 2.2]
with cn = an(q), dn = 1, and remark that only [8, (8.1)] is needed in the proof.)
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Theorem 1. Let 1 = a1 < a2 < a3 < . . . such that limn→∞ an = ∞ and

an+1 ≤ Kan (n ∈ N) with some constant K > 1 . (1.3)

Then, the numbers n(j) := max{n ∈ N : an ≤ Kj} (j = 0, 1, . . . ) are well-
defined, an(j) behaves like Kj, more precisely,

Kj−1 < an(j) ≤ Kj (1.4)

(especially, 1 = n(0) < n(1) < n(2) < . . . ), and the equivalence∥∥{an(q)En}∞n=1

∥∥
q
∼

∥∥∥{
KjEn(j)

}∞
j=0

∥∥∥
q

(1.5)

holds uniformly in all sequences {En}∞n=1 ⊆ [0,∞) which satisfy

C−1En(j+1) ≤ En ≤ CEn(j) for all n ∈ [n(j), n(j + 1)] ( j ∈ N0) , (1.6)

where C ≥ 1 is some constant which has to be given in advance. (This means
that the constants in the equivalence (1.5) depend on C, but not on {En}.)

Condition (1.3) means, in some sense, that {an} cannot increase faster than
exponential: Exponential increase an = Kn−1 is still allowed, but not more,
since (1.3) implies an ≤ Kan−1 ≤ K2an−2 ≤ . . . ≤ Kn−1.

In [1] and [8] it is shown that Theorem 1 is a powerful tool in the theory of
approximation spaces. The following result underlines this fact.

2. The Main Result

Let 1 = a1 < a2 < a3 < . . . be fixed numbers, take X, Y , {Xn}∞n=1, {an(q)}∞n=1

from Section 1, and suppose that (1.1) holds true with

1 = A1 < A2 < A3 < . . . satisfying lim
n→∞

An = ∞ .

A sequence {bn}∞n=1 ⊆ [0,∞) is called almost increasing if it is equivalent to
some increasing sequence. In other words: {bn} is almost increasing if and only
if bm ≤ c bn for all m ≤ n, where c 6= c(n, m). (Indeed, if the last inequality
holds for all m ≤ n, then maxm≤n bm is equivalent to bn).

Theorem 2. Let an increase faster than some positive power of An, but
not faster than exponential, in the following sense:

an+1 ≤ c an and {A−ε
n an}∞n=1 is almost increasing for some ε > 0. (2.1)

Then, for all f ∈ X with
∥∥{an(q)AnEn(f)}∞n=1

∥∥
q

< ∞ and all fn ∈ Xn (n ∈ N)
with ‖f−fn‖X ≤ MEn(f) (M 6= M(n), M = M(f, {fn})), we have f ∈ Y and∥∥{an(q) ‖f − fn‖Y }∞n=1

∥∥
q
≤ cM

∥∥{an(q)AnEn(f)}∞n=1

∥∥
q
, (2.2)

where c 6= c(f, {fn}).
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Remark 1. In the proof we will see that this theorem remains true if
{En(f)} is not the sequence of best approximation errors of f , but any other
decreasing sequence of nonnegative numbers which may depend on f . We have
c 6= c(f, {fn}, {En(f)}) in this case. If q = ∞, then this can be used to delete
the restriction bn ≤ c bn+1 in the assertion ‖f − fn‖Y = O(bn):

If An+1 ≤ cAn and if {bn}∞n=1 ⊆ (0,∞) is a fixed sequence for which,
with some ε > 0, {bnAε

n} is almost decreasing, then ‖f − fn‖X ≤ M(f)A−1
n bn

(f ∈ X, fn ∈ Xn, n ∈ N) implies f ∈ Y and ‖f − fn‖Y ≤ cM(f) bn, where
c 6= c(n, f, {fn}). Indeed, for fixed m, we may apply the above assertion with
f̃ = f − fm, f̃n =0 for n <m, f̃n = fn− fm for n≥m, an =Aε

n: ‖f̃ − f̃n‖X ≤
M(f)A−1

max{n,m}a
−1
max{n,m}bmax{n,m}A

ε
max{n,m} ≤ cM(f)A−1

n a−1
n bmAε

m and we

may set M = cM(f) bmAε
m and En = A−1

n a−1
n . It follows ‖f̃ − f̃n‖Y ≤

cM(f) bmAε
ma−1

n , n ∈ N, where c does not depend on f̃ and {f̃n}, i.e., c 6=
c(n, m, f, {fn}). For n = m we get ‖f − fm‖Y ≤ cM(f) bm.

Before we come to the proof of Theorem 2, let us compare it with known
results: In the classical setting X = Lp

2π, Xn = Tn, Y = W p,r
2π , An = nr

(1 ≤ p ≤ ∞, r ∈ N), it follows from (2.2) and Jackson’s inequality ET
n (f)p ≤

c n−rET
n (f (r))p ([4, (7.2.17)]) that ET

n (f (r))p ∈ lq({an(q)}) and ‖f − Tn‖p ∼
ET

n (f)p imply ‖f (r) − T
(r)
n ‖p ∈ lq({an(q)}). In this form, the assertion is not

new, since ‖f − Tn‖p ≤ MET
n (f)p (f ∈ W p,r

2π ) even implies ‖f (r) − T
(r)
n ‖p ≤

cMET
n (f (r))p ([4, Theorem 7.2.8 and its proof]). But Theorem 2 asserts more

than only the equivalence of ET
n (f (r))p ∈ lq({an(q)}) and ‖f (r) − T

(r)
n ‖p ∈

lq({an(q)}) (if ‖f −Tn‖p ∼ ET
n (f)p): If {an} satisfies (2.1) with An = nr, then

ET
n (f)p ∈ lq({nran(q)}) implies ET

n (f (r))p ∈ lq({an(q)}). This is a new result
(as far as we know). For this reason, we explicitly state the following

Corollary 1. Let 1 ≤ p ≤ ∞, r ∈ N, and let (2.1) be satisfied with An = n.
If f ∈ Lp

2π → fn ∈ Tn is an optimal approximation method, i.e., ‖f − fn‖p ≤
cET

n (f)p with c 6= c(n, f), then, for all f ∈ W p,r
2π and all k = 0, . . . , r,∥∥{

nr−kan(q) ‖f (k) − f (k)
n ‖p

}∞
n=1

∥∥
q
∼

∥∥{
nr−kan(q)ET

n (f (k))p

}∞
n=1

∥∥
q

∼
∥∥{

nran(q)ET
n (f)p

}∞
n=1

∥∥
q
.

Moreover, every f ∈ Lp
2π with

∥∥{nran(q)ET
n (f)p}

∥∥
q

< ∞ belongs to W p,r
2π .

Proof. First we prove that Theorem 2 can be applied with an replaced by

ãn :=

{
nr−kan , q = ∞,∥∥{mr−kam−1(q)}n

m=1

∥∥
q

(a0(q) := 1) , q < ∞,

i.e., that (2.1) (with An = n) is satisfied for ãn. For q = ∞ this is clear and for
q < ∞ we show that ãn ∼ nr−kan: Obviously, ãn ≤ nr−k

∥∥{am−1(q)}n
m=1

∥∥
q

=
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nr−kan. On the other hand, it follows from (m−εam)q ≤ C(n−εan)q, m ≤ n,
that, for M := (C + 1)1/(εq) and n > M ,

ãq
n ≥

( n

M

)q(r−k) ∥∥∥{
am−1(q)

}n

m=[n/M ]+1

∥∥∥q

q
=

( n

M

)q(r−k) (
aq

n − aq
[n/M ]

)
≥

( n

M

)q(r−k) [ n

M

]εq
(

Mεqn−εqaq
n −

[ n

M

]−εq

aq
[n/M ]

)
=

( n

M

)q(r−k) [ n

M

]εq
(

n−εqaq
n + Cn−εqaq

n −
[ n

M

]−εq

aq
[n/M ]

)
≥ c nq(r−k)aq

n.

Now we apply Theorem 2 with ãn instead of an and with Y = W p,k
2π , An = nk.

Taking into account that ãn(q) ∼ nr−kan(q), it follows∥∥{
nr−kan(q) ‖f (k) − f (k)

n ‖p

}∞
n=1

∥∥
q
≤ c

∥∥{
nran(q)ET

n (f)p

}∞
n=1

∥∥
q
, (2.3)

supposed that the right hand side is finite (which implies f ∈ W p,k
2π ). Jackson’s

inequality ET
n (f)p ≤ c n−kET

n (f (k))p shows that the right hand side of (2.3)
can be estimated by a multiple of

∥∥{
nr−kan(q)ET

n (f (k))p

}∞
n=1

∥∥
q
. Of course,

the last expression is less than or equal to the left hand side of (2.3), i.e., both
terms in (2.3) are equivalent to this expression.

�

Now we come back to the setting of Theorem 2. Also in this general frame-
work there is a known result, but only for the case q = ∞: Under the as-
sumptions of Remark 1, the implication ”‖f − fn‖X ∼ En(f) = O(A−1

n bn) ⇒
‖f −fn‖Y = O(bn)” is a part of [2, Theorem 4.2], at least for certain sequences
{An} (e.g., for An = nr, r > 0; [2, Part c) of Theorem 2.1 and Lemma 2.3]).
Maybe it is possible to use the ideas from this paper to generalize the result
to the case of arbitrary q ∈ [1,∞]. But here we go another way. Namely, we
use Theorem 1, since we already know from [8] and [1], that this theorem is a
powerful tool if one wants to prove general results concerning the behaviour of
best approximation errors.

3. Proof of the Main Result

Lemma 1 ([4], Lemma 2.3.4). Let K > 1 be some constant. Then,∥∥{Kj ∑∞
i=j bi }∞j=0

∥∥
q
≤ c

∥∥{Kjbj}∞j=0

∥∥
q

for all {bj} ⊆ [0,∞) (c 6= c({bj})).

Lemma 2. If (2.1) is fulfilled and if n(j) are the numbers from Theorem 1,
then An(j+1) ≤ cAn(j) for all j.

Proof. We have an(j) ∼ an(j+1) ((1.4)). Hence, A−ε
n(j) = [A−ε

n(j)an(j)] a−1
n(j)

≤ c [A−ε
n(j+1)an(j+1)] a−1

n(j+1) = cA−ε
n(j+1). �
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Lemma 3. Take the assumptions of Lemma 2 and let f ∈ X. If there are
fi ∈ Xn(i) such that

∑∞
i=0 An(i)‖f − fi‖X < ∞, then f ∈ Y and

‖f − fj‖Y ≤ c
∞∑

i=j

An(i)‖f − fi‖X for all j ∈ N0 , where c 6= c(f, j, {fj}).

Proof. We have fk − fj =
∑k−1

i=j (fi+1 − fi) for k > j. Thus,

‖fk − fj‖Y ≤
k−1∑
i=j

‖fi+1 − fi‖Y ≤ c
k−1∑
i=j

An(i+1)‖fi+1 − fi‖X

≤ c
∞∑

i=j

An(i+1)‖fi+1 − f‖X + c
∞∑

i=j

An(i+1)‖f − fi‖X

Together with Lemma 2 we obtain ‖fk − fj‖Y ≤ c
∑∞

i=j An(i)‖f − fi‖X for all
k > j ≥ 0. We have supposed that the right hand side converges to zero for
j →∞. Thus, {fj} is a Cauchy sequence in Y . Of course, the Y -limit is equal
to the X-limit, i.e., equal to f (since ‖f −fj‖X → 0 because of the assumption∑∞

j=0 An(j)‖f − fj‖X < ∞). Consequently, f ∈ Y and the limit k →∞ in the
above estimate for ‖fk − fj‖Y yields the assertion.

�

Proof of Theorem 2. In view of Lemma 3, ‖f−fn‖Y can be estimated by

‖f − fn(j)‖Y + ‖fn(j) − fn‖Y ≤ cM
∞∑

i=j

An(i)En(i)(f) + ‖fn(j) − fn‖Y .

(Later we will see that the sum is finite and, consequently, f ∈ Y .) This holds
for all n, j and, hence, also for j = jn defined by n ∈ [n(j), n(j + 1)), where
n is arbitrary. For j = jn we have ‖fn(j) − fn‖Y ≤ cAn(j+1)‖fn(j) − fn‖X ≤
cMAn(j+1)En(j)(f). Together with An(j+1) ∼ An(j) (Lemma 2) it follows

‖f − fn‖Y ≤ cM
∞∑

i=jn

An(i)En(i)(f) =: En .

{En} is decreasing, since {jn} is increasing. Thus, (1.5) can be applied:∥∥{an(q) ‖f − fn‖Y }
∥∥

q
≤

∥∥{an(q)En}
∥∥

q
∼ M

∥∥∥∥∥
{

Kj
∞∑

i=j

An(i)En(i)(f)
}∞

j=0

∥∥∥∥∥
q

.

By Lemma 1, the last expression remains equivalent if the sum is replaced by
its first addend. Hence,∥∥{an(q) ‖f − fn‖Y }∞n=1

∥∥
q
≤ cM

∥∥{Kj An(j)En(j)(f)}∞j=0

∥∥
q
.

We apply again (1.5), but now with En := AnEn(f). This is possible, since En

satisfies (1.6) with the constant C from An(j+1) ≤ CAn(j). Thus,∥∥{an(q) ‖f − fn‖Y }∞n=1

∥∥
q
≤ cM

∥∥{an(q)AnEn(f)}∞n=1

∥∥
q

and the theorem is proved.
�
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