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We study the Cauchy singular integral operator SwI on (−1, 1), where |w| is
a generalized Jacobi weight. This operator is considered in pairs of weighted
spaces of continuous functions, where the weights u and v are generalized Jacobi
weights with nonnegative exponents such that |w| = u/v. We introduce a certain
polynomial approximation space which is well appropriated to serve as domain of
definition of SwI. A description of this space in terms of smoothness properties
shows that it can be viewed as a limit case of weighted Besov spaces of continuous
functions. We use our results to characterize those of the operators awI + SbwI
and %−1(aw%I + bSw%I), %−1 ∈ b−1Π, which act in certain pairs of Ditzian-Totik
type Besov spaces.

1 Introduction

In many mathematical models the Cauchy singular integral operator S appears. It is well-

known that S is bounded in Hölder-Zygmund spaces of functions defined on a closed (and

sufficiently smooth) curve (see [15], Chapter 2, §6, and [17], Section 6.25). But in the present

paper we treat the case of an open curve in which one has to be careful with the behaviour of

Sf at the endpoints of the curve. For the sake of simplicity we consider the interval (−1, 1),

i.e., Sf is defined by

(Sf)(x) =

∫ 1

−1

f(t)

t− x
dt := lim

ε ↓ 0

(∫ x−ε

−1

f(t)

t− x
dt +

∫ 1

x+ε

f(t)

t− x
dt

)
, x ∈ (−1, 1) .

If f ∈ Lp(−1, 1) with some p > 1, then (Sf)(x) exists for almost every x ∈ (−1, 1) ([15],

Chapter 2, §2). But in practice one often wants to know exactly for which points x the value

(Sf)(x) is defined. This requires knowledge about the continuity and the singularities of f .
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A good candidate of a function space which represents the continuity points as well as the

singularities of its elements is the so-called weighted space of continuous functions

Cu := {f : supp u → C such that fu ∈ C := C[−1, 1] } ,

where u : [−1, 1] → R is a given continuous function (the weight) with a support supp u :=

{x ∈ [−1, 1] : u(x) 6= 0} which is dense in [−1, 1]. By fu ∈ C we mean that fu possesses a

continuous extension on [−1, 1] (which is also denoted by fu). This implies that the elements

f of Cu are continuous on supp u and that f may have singularities in the zeros of u. It is

clear that Cu, endowed with the norm

‖f‖u := ‖fu‖ ( ‖g‖ = max {|g(x)| : x ∈ [−1, 1]} ) ,

is a Banach space which is isometrically isomorphic to C.

From a certain point of view, the condition fu ∈ C in the definition of Cu is too

restrictive if u possesses zeros inside (−1, 1): Why should we consider weighted spaces which

do not only depend on the absolute value of the weight u, but also on sign changes of u?

(For example, for u(x) = x and u(x) = |x|, we get different spaces Cx and C|x|.) For this

reason, we also introduce the following weighted space of piecewise continuous functions (by

piecewise continuous we mean continuous with possible exception of finitely many jumps),

which makes sense if u has only finitely many zeros:

PCu :=

{
f : supp u → C : fu is piecewise continuous on [−1, 1]

with jumps only in the zeros of u

}
, endowed with

‖f‖u := sup { |(fu)(x)| : x ∈ supp u } .

Obviously, this is a Banach space which does only depend on |u|.
Unfortunately, the operator S is not bounded in Cu or PCu (however we choose u).

For example, in case u ≡ 1, the image of f ≡ 1 is an unbounded function:∫ 1

−1

1

t− x
dt = ln

1− x

1 + x
.(1.1)

So we have to restrict S onto a subspace of Cu to ensure that the images belong to PCu. For

example, in case of a power weight u ∈ C∩ {u : u(±1) = 0} (see below) with u−1 ∈ L1, S is

an endomorphism of the space of all f for which fu is Hölder continuous and vanishes in all

zeros of u ([9], Section 9.10). In the present paper we will give a much bigger subspace of Cu

which may serve as domain of definition of S, in the sense that S is a bounded operator from

this space into PCu (or PCũ, ũ some modified weight, if u(±1) 6= 0). The definition and

the properties of this space are given in Section 2 and the corresponding mapping properties

of S or, more general, SwI (w: some weight) are proved in Section 3. Of course, we are not

2



able to deal with arbitrary weights w and u: We will consider so-called power weights, i.e.,

w (or only |w|) and u are weights of the form

u(x) =
N∏

i=1

|x− xi|αi with −1 ≤ x1 < . . . < xN ≤ 1 and αi 6= 0 .

For N = 0 this means u ≡ 1 in agreement with the conventions
∏

i∈∅ . = 1 and
∑

i∈∅ . = 0.

(In this sense, the weight u ≡ 1 is also admitted if we speak, for example, about power

weights with positive exponents.) If x1 = −1 and x2 = 1, then we also use the notation

vα,β(x) := (1− x)α(1 + x)β .

In case of a Jacobi weight, i.e., w = vα,β with α, β > −1, it is known that the operator SwI

maps a certain subspace of Cu (namely, the space C0
u which is defined in Section 2) into Cv,

if u and v are Jacobi weights with nonnegative exponents such that

w =
u

v
, v−1 ∈ L1(−1, 1) , and (uv)(−1) = (uv)(1) = 0 .

This deep result is proved in [12]. In the present paper we will generalize this result to the case

of power weights |w| = u/v (and even generalized Jacobi weights). As consequence, we will

obtain criteria which ensure that operators of the type awI +SbwI and %−1(aw%I + bSw%I),

%−1 ∈ b−1Π, Π: set of all polynomials, act between certain weighted (Ditzian-Totik type)

Besov spaces of continuous functions. These spaces can be defined in terms of polynomial

best approximation errors of their elements. For this reason, the approximation-theoretical

definition of the space C0
u from the next section will be very useful in the second part of the

paper. But first we have to consider SwI on C0
u. It turns out that this can be done with

the help of a nice characterization of C0
u in terms of smoothness properties of its elements.

2 The space C0
u

In all what follows, u(x) =
∏N

i=1 |x− xi|αi is a fixed power weight with exponents

αi > 0 for all i = 1, . . . , N .

Definition 2.1 For f ∈ Cu, we define the weighted polynomial best approximation errors

Eu
n(f) := inf

Pn∈Πn

‖f − Pn‖u (n = 0, 1, . . . ) , where Πn := span {xk : k = 0, . . . , n− 1} .

(Especially, Eu
0 (f) = ‖f‖u .) The space C0

u is given by

C0
u :=

{
f ∈ Cu : ‖f‖u,0 :=

∞∑
n=0

Eu
n(f)

n + 1
< ∞

}
.

In case u ≡ 1 we write shortly En(f) and C0 instead of Eu
n(f) and C0

u.
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C0
u is a so-called approximation space, i.e., a space of the type A(X, S; {Xn}) =

{f ∈ X : {E(f ; Xn)} ∈ S} (E(f ; Xn): best approximation errors w.r.t. to nested subspaces

Xn of a Banach space X; here: X = Cu , Xn = Πn). For C0
u, the sequence space S =

l1({1/(n + 1)}) := {{an}∞n=0 : {an/(n + 1)} ∈ l1} does not fit into the classical concept

of approximation spaces, in which S = lq({(n + 1)s−(1/q)}) with s > 0 and 0 < q ≤ ∞
([16]). Especially (in case of a Ditzian-Totik weight u ∈ J∗∞; see [7]), C0

u is different from the

weighted Besov spaces B∞
s,1(ϕ, u) = A(Cu, l

1({(n + 1)s−1}); {Πn}) (see [8]), since it appears

as the ”limit case” s → 0 of these spaces. (This is the reason for using the index 0 in the

notation C0
u.) However, from the general theory of approximation spaces A(X, S; {Xn})

(which is well-known today; see [2], [1], [3], [4], [10]) one can conclude a lot of nice properties

of the space C0
u. For example, the following proposition holds true. (An easy proof can be

found in [12], Lemma 4.1.)

Proposition 2.2 C0
u is a Banach space and the set Π =

⋃
Πn of all algebraic polynomials

is dense in C0
u .

Of course, the above definition of C0
u is only of theoretical interest as long as we do

not have a practical criterion to check whether a function f belongs to C0
u or not. But it

turns out that there exists a surprising and easy smoothness property which characterizes

the elements of C0
u . The present section is devoted to this characterization.

Let us first introduce some notation: In the sequel we shall denote by c positive con-

stants that may have different values at different places. By c 6= c(n, f, . . . ) we will indicate

that c is independent of n, f, . . . . If A and B are two nonnegative quantities, then A ∼ B

means that there exists some constant c > 0, independent of the variables under considera-

tion, such that c−1A ≤ B ≤ cA.

In the proof of the following lemma we need the Schur type inequality

‖Pn‖ ≤ c nγ‖Pn‖u , Pn ∈ Πn (γ := max
i

2[ |xi| ]αi , c 6= c(n, Pn))(2.1)

([14], estimate (7.33)), which is also of own interest. (By [x] we denote the integer part of x.)

Lemma 2.3 There are constants c > 0 and k ∈ N (c 6= c(n, f), k 6= k(n, f)) such that, for

f ∈ Cu and n ∈ N,

Enk(fu) ≤ c

[
Eu

n(f) +
‖f‖u

n

]
and

Eu
nk(f) ≤ c

[
En(fu) +

‖f‖u

n

]
if (fu)(xi) = 0 for all i .

Proof. The proof of the first assertion is left to the reader. (Use that the Hölder continuity of

u yields Em(u) ≤ c m−µ and that (2.1) implies En+nl−1(fu) ≤ ‖(f−fn)u‖+c nγ‖fn‖u‖u−un‖
for all fn ∈ Πn and all un ∈ Πnl .)
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Now, let N > 0 (for N = 0 we have nothing to prove), let us fix some ξ = xj and set

α = αj. Then we may consider the power weight v(x) := u(x)/|x−ξ|α. The second assertion

is proved if we have shown that, with some constant k,

Eu
nk(f) ≤ c

[
Ev

n(fu/v) +
‖f‖u

n

]
.(2.2)

Indeed, we may apply this estimate with nl instead of n (l large enough) and for the term

Ev
nl(fu/v) which now appears on the right hand side we use again the above estimate, but

with v instead of u and another xi. In this way it follows, with w(x) = v(x)/|x− xi|αi ,

Eu
nkl(f) ≤ c

[
Ew

n (fu/w) +
‖f‖u

n

]
.

Repeating this procedure we finally get the assertion. Now we prove (2.2). Set g(x) =

f(x)|x− ξ|α and define

P̃n(x) = Pn(x)− Pn(ξ) , where Pn ∈ Πn with ‖g − Pn‖v = Ev
n(g) .

Then we have |Pn(ξ)| = |Pn(ξ) − g(ξ)| = C|(Pn(ξ) − g(ξ))v(ξ)| (C = 1/v(ξ)) and, conse-

quently, ‖Pn(ξ) v‖ ≤ C‖v‖Ev
n(g) = c Ev

n(g). Hence,

‖g − P̃n‖v ≤ c Ev
n(g) and P̃n(ξ) = 0 .

Especially, Qn(x) := (x− ξ)−1P̃n(x) is a polynomial of degree less than n− 1 and, by (2.1),

‖Qn‖ ≤ c nmax{γ,2}‖( .− ξ)v Qn‖ = c nmax{γ,2}‖P̃n‖v

≤ c nmax{γ,2}‖g‖v = c nmax{γ,2}‖f‖u .

Moreover, we can write

P̃n v = Qn r u with r(x) = |x− ξ|1−α sign(x− ξ) .

Let us suppose, for a moment, that α < 1. Then r is Hölder continuous with exponent

µ := 1− α. Hence, En(r) ≤ c n−µ and this implies

Eu
n(r) ≤ c n−µ .(2.3)

Now we choose some natural number l with l ≥ (max{2, γ}+ 1)/µ and some Rn ∈ Πnl with

‖r −Rn‖u = Eu
nl(r). Then it follows

Eu
nl+1(f) ≤ Eu

nl+n−2(f) ≤ ‖(f −QnRn)u‖
≤ ‖(g − P̃n)v‖+ ‖Qn(r −Rn)u‖

≤ c Ev
n(g) + c

nmax{2,γ}‖f‖u

nlµ
≤ c Ev

n(g) + c
‖f‖u

n
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and (2.2) is proved in case α < 1. This implies that the lemma is proved if αj < 1 for all j.

Now we consider the case αj < 2 for all j. Then it turns out that the proof is the same with

one exception: For those α = αj, for which α ∈ [1, 2), the estimate (2.3) has to be proved

in a different way. For this aim, we choose some η < 1 such that α ∈ [1, 1 + η). Then the

exponent of the weight %(x) = |x− ξ|α−η lies in (0, 1) and r(x)ρ(x) = |x− ξ|1−ηsign (x− ξ)

is Hölder continuous with exponent 1− η and vanishes in ξ. Thus, we can use what we have

already proved:

Eρ
nk(r) ≤ c

[
En(rρ) +

‖rρ‖
n

]
≤ c

n1−η
.

This implies Eu
n(r) ≤ c Eρ

n(r) ≤ c n−µ with µ = (1−η)/k. Similarly one can prove the lemma

in case max αj < 3, then in case max αj < 4, and so on (induction).
�

Remark 2.4 The exact value of the constant γ in the Schur type inequality (2.1) is not

needed in the proof of Lemma 2.3. Therefore, it is worth to mention that, for bigger values

of γ, (2.1) is neither surprising nor new. For example, the well-known estimate

‖Pn‖ ≤ c ‖Pn‖C[−
√

1−n−2,
√

1−n−2] ≤ c n2max{α,β}‖vα,βPn‖ , Pn ∈ Πn+1 , n ∈ N

(α, β ≥ 0, c 6= c(n, Pn); see, e.g., [6], inequality (2.2) of Chapter 8) can be transformed onto

[xi−1, xi] which yields (2.1) with γ = maxi 2αi.

Corollary 2.5 The closure closu Π of the set of all polynomials in the space Cu is given by

closu Π = {f ∈ Cu : (fu)(xi) = 0 for all i} .

Proof. In case u ≡ 1 this is the well-known theorem of Weierstraß. In case u 6≡ 1 we can use

Lemma 2.3: If (fu)(xi) = 0 for all i, then Eu
nk(f) tends to zero (since limn→∞ En(fu) = 0

in view of Weierstraß’ theorem), i.e., f ∈ closu Π. On the other hand, f ∈ closu Π means

that fu is the uniform limit of weighted polynomials gk = Pku (Pk ∈ Π). This implies

(fu)(xi) = 0 for all i, since gk(xi) = 0 for all i.
�

Now we are able to prove the main result of the present section, which asserts that the

elements f of C0
u can be characterized with the help of the classical modulus of continuity

of g = fu. We recall that this modulus is defined by

ω(g, h) := sup
x,y∈[−1,1], |x−y|≤h

|g(x)− g(y)| , h > 0 .
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Theorem 2.6 f ∈ Cu belongs to C0
u if and only if

(fu)(xi) = 0 for all i and

∫ 1

0

ω(fu, h)
dh

h
< ∞ .(2.4)

Moreover, the expression ‖f‖∗u,0 := ‖f‖u +
∫ 1

0
ω(fu, h) dh

h
defines an equivalent norm in C0

u.

Proof. The proof of the norm properties of ‖ . ‖∗u,0 is left to the reader. We need the

well-known equivalence

∞∑
n=1

E(n)

n
∼

∞∑
j=0

E(2j) for all decreasing E : [1,∞) → [0,∞)(2.5)

(which follows from
∑∞

n=1 . . . =
∑∞

j=0

∑2j+1−1
n=2j . . . =

∑∞
j=1

∑2j−1
n=2j−1 . . . ). (2.5) implies

∞∑
n=1

E(n)

n
∼ E(1) +

∞∑
j=1

E(2j)

∫ 2−j+1

2−j

dh

h

≤ E(1) +
∞∑

j=1

∫ 2−j+1

2−j

E(h−1)
dh

h
= E(1) +

∫ 1

0

E(h−1)
dh

h
and

∞∑
n=1

E(n)

n
∼

∞∑
j=0

E(2j)

∫ 2−j

2−j−1

dh

h
≥

∞∑
j=0

∫ 2−j

2−j−1

E(h−1)
dh

h
=

∫ 1

0

E(h−1)
dh

h
.

The substitution h = tθ shows that the last integral can be replaced by
∫ 1

0
E(t−θ)dt

t
, where

θ is an arbitrary fixed positive number. So it follows

∞∑
n=1

E(n)

n
∼ E(1) +

∫ 1

0

E(t−θ)
dt

t
for all decreasing E : [1,∞) → [0,∞) .(2.6)

Now, let k be an arbitrary fixed natural number and let f ∈ Cu . If we set θ = 1/k and

E(x) = Eu
[xk]

(f), then it follows

∞∑
n=1

Eu
nk(f)

n
∼ Eu

1 (f) +

∫ 1

0

Eu
[t−1](f)

dt

t
for all f ∈ Cu .(2.7)

The right hand side does not depend on k. Consequently, the space C0
u does not change

(in the sense of equivalent norms) if we define its norm with Eu
nk(f) instead of Eu

n(f).

Moreover, all elements f of C0
u satisfy (fu)(xi) = 0 (i = 1, . . . , N), since ‖f‖u,0 < ∞ implies

infn Eu
n(f) = limn→∞ Eu

n(f) = 0, i.e., f ∈ closu Π (see Corollary 2.5). Together with Lemma

2.3 it follows

f ∈ C0
u if and only if fu ∈ C0 and (fu)(xi) = 0 for all i ,(2.8)
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where the corresponding norms are equivalent. So it remains to consider the space C0,

i.e., to prove the assertion for u ≡ 1. For this aim, let f ∈ C and Pn ∈ Πn such that

En(f) = ‖f − Pn‖. From Markov’s inequality it follows, for all n ∈ N and all x, t ∈ [−1, 1],

|f(x)− f(t)| ≤ |f(x)− Pn(x)|+ |Pn(x)− Pn(t)|+ |Pn(t)− f(t)|
≤ 2En(f) + ‖P ′

n‖ |x− t| ≤ 2En(f) + n2‖Pn‖ |x− t|
≤ 2En(f) + 2n2‖f‖ |x− t| .

For |x− t| ≤ 1 and n =
[
|x− t|−1/4

]
we obtain

|f(x)− f(t)| ≤ 2E[|x−t|−1/4](f) + 2‖f‖ |x− t|1/2 .

Consequently, ω(f, h) ≤ 2E[h−1/4](f) + 2‖f‖h1/2 for all h ∈ (0, 1]. Together with (2.6)

(applied with E(x) = E[x](f) and θ = 1/4) it follows∫ 1

0

ω(f, h)
dh

h
≤ 2

∫ 1

0

E[h−1/4](f)
dh

h
+ 4‖f‖ ≤ c ‖f‖0 .(2.9)

Thus, the integral on the left hand side is finite if f belongs to C0. The counterdirection

follows from (2.6) and Jackson’s theorem:

∞∑
n=1

En(f)

n
≤ c

∞∑
n=1

ω(f, n−1)

n
∼ ω(f, 1) +

∫ 1

0

ω(f, h)
dh

h
.(2.10)

Obviously, (2.9) and (2.10) imply ‖f‖0 ∼ ‖f‖+
∫ 1

0
ω(f, h)dh

h
.

�

The following corollary shows that, in many cases, the approximation space C0
u does

not change if we approximate with weighted polynomials instead of usual polynomials.

Corollary 2.7 Let v be a power weight with positive exponents and set

C̃0
u :=

{
f ∈ Cu : ‖f‖∼u,0 :=

∞∑
n=0

Eu(f ; (v/u)Πn)

n + 1
< ∞

}
,

where Eu(f ; (v/u)Πn) = infPn∈Πn ‖f − (v/u)Pn‖u . Then we have

C0
u ∩ closu (v/u)Π = C̃0

u ∩ closu Π

in the sense of equivalent norms. (Remark that, in view of Corollary 2.5, closu (v/u)Π =

{f ∈ Cu : fu = 0 in the zeros of v} and closu Π = {f ∈ Cu : fu = 0 in the zeros of u}.)
Especially, C0

u = C̃0
u if u and v have the same zeros.
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Proof. Obviously, Eu(f ; (v/u)Πn) = Ev
n(fu/v), i.e., C̃0

u = {f : fu/v ∈ C0
v} and ‖f‖∼u,0 =

‖fu/v‖v,0 . Now the assertion follows from (2.8).
�

Remark 2.8 Theorem 2.6 says that C0
u can be characterized with the help of C0 (i.e., (2.8)

holds true) and that C0 is nothing else than the well-known Dini space of all functions

f ∈ C, those moduli of continuity are integrable w.r.t. dh/h. This is somewhat surprising,

since usually the classical modulus ω(f, h) is not appropriated to characterize equivalently

the behaviour of the errors of best approximation by algebraic polynomials. For example,

the behaviour En(f) = O(n−s) (s > 0 fixed) cannot be formulated in terms of ω(f, h). But

in Theorem 2.6 we do not consider such a classical order En(f) = O(n−s): The condition∑∞
n=1 En(f)/n < ∞ is much weaker and does not change if we replace En(f) by Enk(f)

(k ∈ N fixed). This last fact is not given for classical behaviours, but it is used in the proof

of the theorem.

At the end of this section we want to point out that the classical modulus of continuity

is not the only modulus which is appropriated to characterize the elements of C0
u. For the

sake of simplicity, we restrict ourselves to the unweighted space C0. This is justified by (2.8).

It is well-known that, for ϕ(x) =
√

1− x2, the ϕ-modulus of smoothness

ωr
ϕ(f, t) = sup

0<h≤t
‖∆r

hϕf‖L∞(D(∆r
hϕf)) , (∆r

hϕf)(x) =
r∑

k=0

(−1)k

(
r

k

)
f
(
x +

(r

2
− k
)

hϕ(x)
)

(r ∈ N, D(∆r
hϕf) = {x ∈ (−1, 1) : x± rh

2
ϕ(x) ∈ (−1, 1)}) is well appropriated to characterize

the behaviour of polynomial best approximation errors. So it is not surprising that the

approximation space C0 can be described in terms of ωr
ϕ(f, t):

‖f‖0 ∼ ‖f‖+

∫ 1

0

ωr
ϕ(f, t)

dt

t
for all f ∈ C(2.11)

([12], Theorem 2.3). This can be viewed as a corollary of Theorem 2.6: The right side of

(2.11) can be estimated by the corresponding expression with ω(f, t). This is a consequence

of ωr
ϕ(f, t) ≤ c ω1

ϕ(f, t), t ≤ t0 ([7], Theorem 4.1.3) and ω1
ϕ(f, t) ≤ ω(f, t) (since ∆1

hϕf(x) ≤
ω(f, h)). The other part of the equivalence (2.11) follows from the Jackson type theorem

En(f) ≤ c ωr
ϕ(f, n−1) (n ≥ n0 , c 6= c(n, f))(2.12)

([7], Theorem 7.2.1) and (2.6). With the same arguments one can show that in (2.11) the

modulus ωr
ϕ(f, t) can be replaced by any other modulus of smoothness which satisfies a

Jackson type theorem (where even Enk(f), k ∈ N fixed, may appear on the left hand side;

see (2.7)) and which is weaker than ω(f, t).

We finish this section with a short consideration of more general weights u:
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Remark 2.9 If u(x) = B(x)
∏N

i=1 |x− xi|αi (xi ∈ [−1, 1], αi > 0) with some non-vanishing

real-valued function B ∈
⋂

i C
0[xi−1, xi], i.e.,

B = B0 χ[−1,x1) + B1 χ[x1,x2) + . . . + BN χ[xN ,1] with Bi ∈ C0 and Bi 6= 0 on [−1, 1] ,

then we have (in the sense of equivalent norms)

C0
u = C0

u/B = {f ∈ Cu : fu ∈ C0 and (fu)(xi) = 0 for all i} .(2.13)

If only u(x) = B(x)r(x) with some Hölder continuous function r : [−1, 1] → R satisfying

r(x) ≥ c
∏N

i=1 |x− xi|αi (0 < c 6= c(x)) and r(xi) = 0 for all i, then we have at least

C0
u = C0

r ↪→ {f ∈ Cu : fu ∈ C0 and (fu)(xi) = 0 for all i} .(2.14)

(”↪→” means continuous embedding.)

Proof. Obviously, u = B r is a continuous function with zeros in the points xi and the set

{f ∈ Cu : (fu)(xi) = 0 for all i} is equal to {f ∈ Cr : (fu)(xi) = 0 for all i}. Only elements

of this set can belong to C0
u and C0

r, respectively, since f ∈ C0
u (f ∈ C0

r) implies Eu
n(f) → 0

(Er
n(f) → 0) and, consequently, (fu)(xi) = 0 (see the proof of Corollary 2.5). Now, to prove

C0
u = C0

r, it remains to show ‖f‖u,0 ∼ ‖f‖r,0 for all f ∈ Cu with (fu)(xi) = 0. But this

follows from ‖f‖u ∼ ‖f‖r which implies Eu
n(f) ∼ Er

n(f). In view of (2.8), the second identity

of (2.13) holds true if we replace fu ∈ C0 by fu/B ∈ C0. If we write

fu

B
=

fu

B0

χ[−1,x1) +
fu

B1

χ[x1,x2) + . . . +
fu

BN

χ[xN ,1] and

fu = B0
fu

B
χ[−1,x1) + B1

fu

B
χ[x1,x2) + . . . + BN

fu

B
χ[xN ,1]

and take into account that C0 is a Banach algebra which is inversely closed in C (see [3],

Theorems 1 and 2, or use the characterization (2.4) of C0 together with the estimates

ω(fg, h) ≤ ‖g‖ω(f, h) + ‖f‖ω(g, h) and ω(g−1, h) ≤ ‖g‖−2ω(g, h)), then it is easy to

prove that the assertions fu/B ∈ C0 and fu ∈ C0 (as well as the corresponding C0-

norms) are equivalent if (fu)(xi) = 0. (Remark that ω(χifu/Bi, h) ≤ ω(fu/Bi, h) and

ω(χiBifu/B, h) ≤ ω(Bifu/B, h).) To prove the embedding (2.14), we only have to remark

that Schur’s inequality (2.1) for the power weight
∏N

i=1 |x−xi|αi implies the same inequality

for the weight r. Thus, the first assertion of Lemma 2.3 can be proved with r instead of a

power weight. In view of (2.7), this gives ‖fr‖0 ≤ c ‖f‖r,0 ∼ ‖f‖u,0 for all f ∈ C0
u = C0

r and

it remains to mention that, in the same way as above, ‖fu‖0 ≤ c ‖fu/B‖0 = c ‖fr‖0 for all

f ∈ C0
r.

�
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3 The operator SwI on the space C0
u

In all what follows, u(x) =
∏N

i=1 |x−xi|αi and v(x) =
∏M

j=1 |x−yj|βj are power weights with

αi > 0 for all i and 0 < βj < 1 for all j .(3.1)

(In other words: u, v ∈ L∞(−1, 1) and v−1 ∈ L1(−1, 1).) Moreover, we fix a function

w : supp v → R with |w| = u/v which may change its sign in the zeros of u and v:

w(x) =

∏N

i=1
[sign(x− xi)]

ρi |x− xi|αi∏M
j=1 [sign(x− yj)]

τj |x− yj|βj

=:
wu(x)

wv(x)
with ρi, τj ∈ {1, 2} .(3.2)

The following theorem is the main result of the present paper. It shows that SwI is a

bounded linear operator from C0
u into Cv (shortly, SwI ∈ L(C0

u,Cv)) if u vanishes in all

inner zeros of v and in those of the points ±1 which are no zeros of v. In all other cases, Cv

has to be replaced by some bigger space.

Theorem 3.1 Let u, v and w satisfy the above conditions. Then

SwI ∈ L(C0
u,PCṽ) , where ṽ(x) =

v(x)

1 + (uv)(−1) | ln(1 + x)|+ (uv)(1) | ln(1− x)|
.

Particularly, for f ∈ C0
u, the Cauchy principle value integral (Swf)(x) exists in all x ∈

supp ṽ. In the common zeros y of fu and v (especially, in all common zeros of u and v),

the limits limx→y(vSwf)(x) are zero.

The factors (uv)(±1) are introduced in ṽ to indicate that ln(1 ∓ x) disappears if

(uv)(±1) = 0. If uv does not vanish in ±1, then ṽ 6= v and one may ask for which functions

f ∈ C0
u the images Swf belong to PCv in spite of this. Moreover, it is of interest to know

whether all of the conditions (fu)(xi) = 0 which appear in

C0
u = {f ∈ Cu : fu ∈ C0 and (fu)(xi) = 0 for all i}

(see (2.8)) are really needed in Theorem 3.1. (If not, then C0
u can be replaced by a bigger

space.) The following corollary completely answers these questions.

Corollary 3.2 Let C0(wu) = {f ∈ C(supp wu) : fwu ∈ C0}, endowed with ‖f‖C0(wu) =

‖fwu‖0, and define the following subspaces of C0(wu):

C0
+(wu) = {f ∈ C0(wu) : (fwu)(1) = 0} , C0

−(wu) = {f ∈ C0(wu) : (fwu)(−1) = 0} ,

C0
±(wu) = {f ∈ C0(wu) : (fwu)(−1) = (fwu)(1) = 0} .

11



Moreover, denote by v+, v−, and v± those ”logarithmic” modifications of v which vanish in

+1, −1, and ±1, respectively, i.e.,

v+(x) =
v(x)

1 + v(1) | ln(1− x)|
, v−(x) =

v(x)

1 + v(−1) | ln(1 + x)|
,

v±(x) =
v(x)

1 + v(1) | ln(1− x)|+ v(−1) | ln(1 + x)|
.

Then SwI ∈ L(C0(wu),PCv±), SwI ∈ L(C0
+(wu),PCv−), SwI ∈ L(C0

−(wu),PCv+), and

SwI ∈ L(C0
±(wu),PCv). Moreover, in all common zeros y of fwu and v (f ∈ C0(wu)), the

limits limx→y(vSwf)(x) are zero.

Proof. This follows from the proof of Theorem 3.1. Alternatively, one also can conclude

it directly from Theorem 3.1: In view of (2.8), the assertions f ∈ C0(wu), f ∈ C0
+(wu),

f ∈ C0
−(wu), and f ∈ C0

±(wu) are equivalent to

fwu ∈ C0 ,
fwu

v1,0
∈ C0

v1,0 ,
fwu

v0,1
∈ C0

v0,1 , and
fwu

v1,1
∈ C0

v1,1 , respectively

(with corresponding equivalent norms). Hence, we only have to write

Swf = S
1

wv

(fwu) = S
v1,0

wv

(
fwu

v1,0

)
= S

v0,1

wv

(
fwu

v0,1

)
= S

v1,1

wv

(
fwu

v1,1

)
and to apply Theorem 3.1 with 1, v1,0, v0,1, and v1,1 instead of u.

�

Before we prove Theorem 3.1, we remark that the results also hold true for more general

weights w and u (for example, for generalized Jacobi weights):

Remark 3.3 Let w(x) = A(x)w1(x)/w2(x), where A, w1, w2 : [−1, 1] → R belong to C0,

w1 6= 0 a.e. on [−1, 1] and |w2(x)| =
M∏

j=1

|x− yj|βj =: v(x) with yj ∈ [−1, 1], βj ∈ (0, 1).

Then the assertions of Corollary 3.2 remain true with w1 instead of wu. (Together with

the embedding (2.14) this implies that, in case of a weight w1(x) = u(x) = B(x) r(x) as in

Remark 2.9, the assertions of Theorem 3.1 also remain true.)

Proof. Let f belong to one of the spaces C0(w1), C0
+(w1), C0

−(w1), or C0
±(w1). Then fw1A

belongs to the corresponding unweighted space C0, C0
+, C0

−, or C0
±, where ‖fw1A‖0 ≤

c ‖f‖C0(w1) (since C0 is a Banach algebra; see the proof of Remark 2.9). If we write Swf =

Sw−1
2 (fw1A), then the assertion follows from Corollary 3.2, applied with 1 instead of wu.

�
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Now we come to the proof of Theorem 3.1. First we mention that, in view of the

characterization (2.13) and the equality Swf = Sw−1
v (fwu), it is clear that we have to deal

with Sw−1
v I on the unweighted space C0 (or subspaces of it). For this, we use the following

decomposition of Sw−1
v f :

(Sw−1
v f)(x) =

∫ 1

−1

f(t)− f(x)

t− x
w−1

v (t) dt + f(x)

∫ 1

−1

w−1
v (t)

t− x
dt .(3.3)

We will see that the first addend has better properties than the second one:

Lemma 3.4 Sw−1
v I − S(w−1

v ) · I ∈ L(C0, closv Π). (closv Π is given in Corollary 2.5 and

Sw−1
v I − S(w−1

v ) · I denotes the operator which is defined by the first addend of (3.3).)

Proof. First we will show that, for all x ∈ supp v,∫ 1

−1

∣∣∣∣f(t)− f(x)

t− x

∣∣∣∣ v−1(t) dt ≤ c v−1(x)

(
‖f‖+

∫ 1

−1

∣∣∣∣f(t)− f(x)

t− x

∣∣∣∣ dt

)
.(3.4)

For this, we may assume M > 0. Moreover, it is sufficient to deal with |x− y|−β (y ∈ [−1, 1]

and β ∈ (0, 1) fixed) instead of v−1(x), since

v−1(x) ∼ |x− y1|−β1 + . . . + |x− yM |−βM .

(Write the right hand side as a fraction or consider the cases x ∈ Ij , where Ij are neighbor-

hoods of the points yj .) Thus, (3.4) is proved if we can show that, for x ∈ [−1, 1] \ {y},∫ 1

−1

∣∣∣∣f(t)− f(x)

t− x

∣∣∣∣ |t− y|−β dt ≤ c |x− y|−β

(
‖f‖+

∫ 1

−1

∣∣∣∣f(t)− f(x)

t− x

∣∣∣∣ dt

)
.(3.5)

For this aim, we first consider the case x > y. In this case, the left hand side of (3.5) can be

estimated by

2‖f‖

[∫ y−x−y
2

(y+1)

−1

(y − t)−β

x− t
dt +

∫ x+y
2

y−x−y
2

(y+1)

|t− y|−β

x− t
dt

]
+

∫ 1

x+y
2

∣∣∣∣f(t)− f(x)

t− x

∣∣∣∣ (t− y)−βdt

=: 2‖f‖ [I1 + I2] + I3 .

If y = −1, then I1 vanishes. Otherwise we use that x− t ≥ y − t in the first integral:

I1 ≤
∫ y−x−y

2
(y+1)

−1

(y − t)−β−1dt ≤ c (x− y)−β .

In integral I2 we have x− t ≥ (x− y)/2 and it follows

I2 ≤ 2(x− y)−1

∫ x+y
2

y−x−y
2

(y+1)

|t− y|−β dt ≤ c (x− y)−β .
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For t ≥ (x + y)/2, (t− y)−β can be estimated by 2β(x− y)−β. It follows

I3 ≤ c (x− y)−β

∫ 1

−1

∣∣∣∣f(t)− f(x)

t− x

∣∣∣∣ dt .

Thus, (3.5) is proved in case x > y. If x < y, then one can proceed in a similar way or one

uses the substitution τ = −t which makes it possible to apply what we have already proved

(with −x and −y instead of x and y). Now, (3.4) is proved. The last integral in (3.4) can

be estimated as follows:∫ 1

−1

∣∣∣∣f(t)− f(x)

t− x

∣∣∣∣ dt ≤
∫ 1

−1

ω(f, |t− x|)
|t− x|

dt =

∫ 1−x

−1−x

ω(f, |h|)
|h|

dh

≤ 2

∫ 2

0

ω(f, h)

h
dh ≤ c ‖f‖0

(see Theorem 2.6). So we have proved

Sw−1
v I − S(w−1

v ) · I ∈ L(C0,Bv) , where

Bv = {g : supp v → C such that ‖g‖v = supx∈ supp v |g(x)v(x)| < ∞} .
(3.6)

Now we remark that the first addend in (3.3) is a polynomial if f is a polynomial. Hence,

Sw−1
v I −S(w−1

v ) · I maps Π into Π. Since Π is dense in C0 (Proposition 2.2), it follows that

C0 is mapped into the closure of Π in Bv which is equal to closv Π.
�

To obtain properties of the second addend of (3.3) in case of a Jacobi weight v, we

need the following well-known result ([17], Theorem 9.9).

Proposition 3.5 Let α, β ∈ (−1, 1) \ {0} such that α + β ∈ {−1, 0, 1}. Then, the operator

Aα,β = avα,βI + bSvα,βI with a, b ∈ R such that a− iπ b = eiπα(3.7)

maps Πn into Πn+α+β for all n ∈ N.

Now we are able to treat the last integral in (3.3) for weights v with only one zero:

Lemma 3.6 Let y ∈ [−1, 1] and β ∈ (0, 1) be fixed and set vy(x) = |x− y|β. Moreover, let

wy(x) = [sign(x − y)]k vy(x) (k ∈ {1, 2}). Then Sw−1
y ∈ PCv±y

. (v±y is defined in Corollary

3.2.)

Proof. If y = 1, then wy = Cvy (C = −1 or C = 1), v±y = v1/[1 + 2β| ln(1 + . )| ], and we

may use Proposition 3.5 (with n = 1) to show that v1Sv−1
1 is continuous on [0, 1]:

(1 + x)β

∫ 1

−1

(1− t)−β

t− x
dt =

∫ 1

−1

(1 + x)β − (1 + t)β

t− x

dt

(1− t)β
+

∫ 1

−1

v−β,β(t)

t− x
dt

=

∫ 1

−1

(1 + x)β − (1 + t)β

t− x

dt

(1− t)β
+

(A−β,β1)(x)

b
− a

b
v−β,β(x).

14



In view of Lemma 3.4 and Proposition 3.5, the last term belongs to Cv1 . To prove the

continuity of v±1 Sv−1
1 on [−1, 0], we write

(1− x)

∫ 1

−1

(1− t)−β

t− x
dt =∫ 1

−1

(1− x)− (1− t)

t− x

dt

(1− t)β
+

∫ 1

−1

(1− t)1−β − (1− x)1−β

t− x
dt +

∫ 1

−1

(1− x)1−β

t− x
dt(3.8)

=

∫ 1

−1

dt

(1− t)β
+

∫ 1

−1

(1− t)1−β − (1− x)1−β

t− x
dt + (1− x)1−β ln

1− x

1 + x
.

The right hand side, divided by 1 + 2β| ln(1 + x)|, is continuous on [−1, 0] (Lemma 3.4 with

v ≡ 1). Analogously one can prove the assertion in case y = −1. By the way, the sum of the

last two addends in (3.8) defines a function g(x) which is Hölder continuous with exponent

1− β on [0, 1] (see, e.g., [17], Remark 9.4). Hence, the absolute value |g(x)− g(1)| of (3.8)

can be estimated by c (1− x)1−β for x ≥ 0. In this way one can prove the boundedness (but

not the continuity) of v±1 Sv−1
1 without using Proposition 3.5. Similar considerations also

lead to the boundedness of v±y Sw−1
y in case y 6= ±1. But we go another way, since we want

to prove that (v±y Sw−1
y )(x) has no discontinuities, excepting a possible jump in x = y. For

this aim, let y ∈ (−1, 1) and write∫ 1

−1

w−1
y (t)

t− x
dt =

∫ 1

−1

w−1
y (t)− w−1

y (x)

t− x
dt + w−1

y (x) ln
1− x

1 + x
.

The second addend is an element of PCv±y
and for the first addend we use the substitution

t− y = τ(x− y):∫ 1

−1

w−1
y (t)− w−1

y (x)

t− x
dt = w−1

y (x)

∫ 1−y
x−y

− 1+y
x−y

(sign τ)k|τ |−β − 1

τ − 1
dτ

= w−1
y (x)

(∫ 1−y
x−y

− 1+y
x−y

(sign τ)k|τ |−β − 2(1 + τ 2)−1

τ − 1
dτ +

∫ 1−y
x−y

− 1+y
x−y

2(1 + τ 2)−1 − 1

τ − 1
dτ

)
.

The first integrand belongs to L1(R). Consequently, the first integral defines a continuous

function on R\{y} for which the limits x → y±0 exist. The second integral can be computed

explicitly:∫ 1−y
x−y

− 1+y
x−y

2(1 + τ 2)−1 − 1

τ − 1
dτ = −

[
arctan τ +

1

2
ln(1 + τ 2)

]τ= 1−y
x−y

τ=− 1+y
x−y

=
1

2
ln

(x− y)2 + (1 + y)2

(x− y)2 + (1− y)2
− arctan

1− y

x− y
− arctan

1 + y

x− y
.

Again we have a continuous function on R \ {y} for which the limits x → y ± 0 exist.
�
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We have seen that the last integral in the decomposition (3.3) of Sw−1
v f (f ∈ C0) may

contain logarithmic singularities in ±1. The following lemma shows that such singularities

can be deleted by the factor f(x) if f has a zero in the corresponding point y = ±1.

Lemma 3.7 For all f ∈ C0 and all x, y ∈ [−1, 1] with 0 < |x− y| ≤ 1 we have

∣∣∣[f(x)− f(y)] ln |x− y|
∣∣∣ ≤ 2

∫ √|x−y|

|x−y|
ω(f, h)

dh

h
≤ c ‖f‖0 ,(3.9)

where c 6= c(f, x, y).

Proof. We have
∫√|x−y|
|x−y| h−1dh =

∣∣1
2
ln |x− y|

∣∣ . Hence,

∣∣∣[f(x)− f(y)] ln |x− y|
∣∣∣ ≤ 2 ω(f, |x− y|)

∫ √|x−y|

|x−y|

dh

h
≤ 2

∫ √|x−y|

|x−y|
ω(f, h)

dh

h
.

The second part of (3.9) follows from Theorem 2.6.
�

Now we have all tools which we need for the

Proof of Theorem 3.1. Let g ∈ C0
u and write Swg = Sw−1

v f with f := g wu. In view of

(2.13), we have f ∈ C0, ‖f‖0 ∼ ‖g‖u,0, and f(xi) = 0 for all i. So it remains to prove the

assertions of Corollary 3.2 for the case wu ≡ 1. This can be done with the help of (3.3): For

the first addend of this decomposition we have

Sw−1
v f − fSw−1

v ∈ closv Π and ‖Sw−1
v f − fSw−1

v ‖v ≤ c ‖f‖0

(Lemma 3.4). Especially, the product of this addend and v vanishes in all zeros of v (see

Corollary 2.5). We still have to prove

fSw−1
v ∈ PCv∗ , where v∗ = v±, v−, v+, v corresponds to f ∈ C0,C0

+,C0
−,C0

± ,

‖fSw−1
v ‖v∗ ≤ c ‖f‖0 , and limx→x0(vfSw−1

v )(x) = 0 for all zeros x0 of f .
(3.10)

If wv ≡ 1, then this follows from (1.1) and Lemma 3.7, taking into account that the second

term of (3.9) goes to zero for x → y (because of Theorem 2.6) and, consequently,

lim
x→±1

f(x) ln(1∓ x) = 0 and ‖f ln(1∓ . )‖ ≤ c ‖f‖0 for all f ∈ C0 with f(±1) = 0.(3.11)

(Remark that, for example in case f(1) = 0, this limit relation (fS1)(1 − 0) = 0 is in

accordance with our decomposition (3.3) in which the second term does not appear for
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x = 1.) Now we prove (3.10) in case M > 0. For this aim, set vj(x) = |x − yj|βj , wj(x) =

[sign(x− yj)]
τj vj(x), and write

w−1
v =

g1

w1

+ . . . +
gM

wM

with gk(x) =

∏
j 6=k[sign(x− yj)]

τj |x− yj|∏
j 6=1 |x− yj|βj+1 + . . . +

∏
j 6=M |x− yj|βj+1

.

Then, the function Sw−1
v can be decomposed as follows:∫ 1

−1

w−1
v (t)

t− x
dt =

M∑
k=1

(∫ 1

−1

gk(t)− gk(x)

t− x
w−1

k (t) dt + gk(x)

∫ 1

−1

w−1
k (t)

t− x
dt

)
.

From Lemma 3.4 it follows that the first integral belongs to Cvk
⊆ Cv for all k (since gk is

Lipschitz continuous). In view of Lemma 3.6, the second integral is an element of PCv±k
.

This implies that its product with gk(x) belongs to PCv± , since gk(x) contains the factor

1∓ x if ±1 is a zero of v and yk 6= ±1. Together with (3.11) it follows (3.10). It remains to

mention that, for example in case f(1) = 0, v(1) 6= 0, we get no problem with the value of

the integral (Sw−1
v f)(1): In this case the second addend in (3.3) does not appear for x = 1

and this is in accordance with the limit relation (fSw−1
v )(1− 0) = 0.

�

We finish this section with two remarks about operators related to SwI.

Remark 3.8 Theorem 3.1 can be used to obtain mapping properties of Cauchy singular in-

tegral operators with kernels which have, in addition to the strong singularity on the diagonal

x = t, a finite number of further strong singularities on lines t = ti. For example, the oper-

ator St−1I (which may be defined by the sum of principle value integrals over [−|x/2|, |x/2|]
and [−1, 1] \ [−|x/2|, |x/2|]) maps C0

± into Cx. This follows from Corollary 3.2, applied to

the addends of the decomposition∫ 1

−1

f(t)

t− x

dt

t
=

1

x

(∫ 1

−1

f(t)

t− x
dt−

∫ 1

−1

f(t)

t
dt

)
=

(Sf)(x)− (Sf)(0)

x
.

Another operator which is closely connected with S is the Cauchy singular integral

operator S[a,b] on another interval [a, b] (−∞ < a < b < ∞):

(S[a,b] f)(x) =

∫ b

a

f(t)

t− x
dt .

Of course, all what we have proved until now can be transformed onto [a, b], i.e., the following

assertions hold true if w is a weight of the form (3.2), where wu and wv correspond to power

weights u(x) =
∏N

i=1 |x − xi|αi and v(x) =
∏M

j=1 |x − yj|βj with xi, yj ∈ R and αi > 0,

0 < βj < 1. (Remark that the restriction xi, yj ∈ [a, b] is not necessary, since the differences

between u, v, wu, wv, w and the corresponding products u∗, v∗, w∗
u, w

∗
v, w

∗ taken over i, j with

xi, yj ∈ [a, b] are factors which are non-zero and C∞ on [a, b].)
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(i) The approximation space C0
u[a, b] (or shortly C0[a, b] if u ≡ 1), i.e.,

C0
u[a, b] := A(Cu[a, b], l1({(n + 1)−1}); {Πn})

(Cu[a, b] = {f ∈ C({x ∈ [a, b] : u(x) 6= 0}) : fu ∈ C[a, b]}, ‖f‖u,[a,b] = ‖fu‖C[a,b]) can

be defined equivalently by

C0
u[a, b] = {f ∈ Cu[a, b] : fu ∈ C0[a, b] and (fu)(xi) = 0 for all xi ∈ [a, b]}
= {f ∈ Cwu [a, b] : fwu ∈ C0[a, b] and (fwu)(xi) = 0 for all xi ∈ [a, b]}
= {f ∈ Cu[a, b] :

∫ 1

0
ω[a,b](fu, h) h−1dh < ∞ and (fu)(xi) = 0 for all xi ∈ [a, b]}.

In other words: ‖f‖C0
u[a,b] ∼ ‖fu‖C0[a,b] ∼ ‖fwu‖C0[a,b] for all f ∈ closCu[a,b] Π =

{f ∈ Cu[a, b] : (fu)(xi) = 0, xi ∈ [a, b]} = {f ∈ Cwu [a, b] : (fwu)(xi) = 0, xi ∈ [a, b]}
and ‖g‖C0[a,b] ∼ ‖g‖C[a,b] +

∫ 1

0
ω[a,b](g, h) h−1dh.

(ii) S[a,b] wI ∈ L(C0
u[a, b],PCṽ[a, b]), where PCṽ[a, b] is defined similarly to PCṽ (only

[−1, 1] has to be replaced by [a, b]) and

ṽ(x) =
v(x)

1 + (uv)(a) | ln(x− a)|+ (uv)(b) | ln(b− x)|
.

It seems to be natural that the image space PCṽ[a, b] in assertion (ii) consists of functions

on [a, b]. But on the other hand, also for x 6∈ [a, b], (S[a,b] wf)(x) is well-defined (as a usual

Lebesgue integral). We will see that, in case (uv)(a) = (uv)(b) = 0, one can take a bigger

interval for the image space. For the sake of simplicity, we will restrict on subintervals

of [−1, 1]. This makes it possible to use our standard notation and assumptions from the

beginning of this section and from Corollary 3.2.

Remark 3.9 Let −1 ≤ a < b ≤ 1 and take u, v, w as in the beginning of this section.

If (uv)(a) = (uv)(b) = 0, then S[a,b] wI ∈ L(C0
u[a, b],PCv) .(3.12)

In the cases a = −1 < b < 1 and −1 < a < b = 1, (3.12) can be generalized:

If (uv)(b) = 0, then S[−1,b] wI ∈ L(C0
u[−1, b],PCv−).

If (uv)(a) = 0, then S[a,1] wI ∈ L(C0
u[a, 1],PCv+).

(3.13)

Proof. Let f ∈ C0
u[a, b]. Then fwu ∈ C0[a, b] can be extended to a C0-function by setting

(fwu)(−1) = 0 (if a > −1), (fwu)(1) = 0 (if b < 1) and connecting (fwu)(−1) and (fwu)(a)

as well as (fwu)(b) and (fwu)(1) by lines. Obviously, this yields an extension f ∈ C0(wu)

with ‖fwu‖0 ≤ c‖f‖C0
u[a,b]. Now we define w̃ by w̃ = −w on [a, b] and w̃ = w on [−1, 1]\[a, b].

In other words, w̃(x) = sign(x− a) sign(x− b) w(x), and this means that w̃ (or −w̃ if b = 1)
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is again a weight of the form (3.2), where only the signs have to be chosen different from

those of w. Now we write 2 S[a,b] wf = Swf − Sw̃f and the assertions follow from Corollary

3.2, since fwu vanishes in 1 if b < 1 or u(1) = 0 and in −1 if a > −1 or u(−1) = 0.
�

We mention that the above remark also leads to generalizations of Theorem 3.1 if we

transform [a, b] onto [−1, 1]. For example, the transformation [a, b] = [−1/2, 1/2] → [−1, 1],

[−1, 1] → [−2, 2] of (3.12) yields the following generalization in case (uv)(±1) = 0:

If (uv)(−1) = (uv)(1) = 0 , then SwI ∈ L(C0
u,PCv[−2, 2]) .(3.14)

Of course, if u(−1) = u(1) = 0, then this is not surprising, since then f ∈ C0
u can be

extended by zero to a C0
u[−2, 2]-function, so that the result for S[−2,2] can be applied. But

in case u(±1) 6= 0, (3.14) is a non-trivial corollary of Theorem 3.1.

4 SwI on spaces of piecewise C0
u-functions

Take the notation and assumptions of Section 3. In Remark 3.9 we have seen that the

possible sign changes in (3.2) can be used to consider SwI on piecewise C0
u-functions of the

form fχ[a,b] (f ∈ C0
u[a, b]), where a and b are either endpoints of [−1, 1] or zeros of v. (In

principle we can also consider zeros a or b of u. But, if for example u(a) = 0, then also

(fu)(a) = 0 for f ∈ C0
u[a, b], i.e., fχ[a,b] ∈ C0

u[−1, b].) This makes it possible to consider

SwI on piecewise C0
u-functions w.r.t. the partition

[−1, 1] = [y0, y1] ∪ [y1, y2] ∪ . . . ∪ [yM , yM+1] , y0 := −1 , yM+1 := 1

(i.e., with possible jumps in those zeros of v which are no zeros of u):

Proposition 4.1 Let PC0
u(y1, . . . , yM) be the space of all f : supp u\{y1, . . . , yM} → C with

f|(yi,yi+1)
∈ C0

u[yi, yi+1], i = 0, . . . ,M , endowed with ‖f‖PC0
u(y1,...,yM ) =

M∑
i=0

‖f‖C0
u[yi,yi+1]. Then,

SwI ∈ L(PC0
u(y1, . . . , yM),PCṽ) .(4.1)

(C0
u[yi, yi+1] is defined before Remark 3.9.)

Proof. Write SwI =
∑M

i=0 S[yi,yi+1] wI and apply (3.12) (for all i with (uv)(yi) = (uv)(yi+1)

= 0) and (3.13) (for i = 0 if (uv)(−1) 6= 0 and for i = M if (uv)(1) 6= 0).
�

As in the proof of Corollary 3.2 one can generalize (4.1) to the space

PC0(wu; y1, . . . , yM) = {f ∈ C(supp u \ {y1, . . . , yM}) : fwu ∈ PC0(y1, . . . , yM)}
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(PC0(y1, . . ., yM) means the unweighted space of piecewise C0-functions with jumps in yj)

and its subspaces PC0
+(wu; y1, . . ., yM), PC0

−(wu; y1, . . ., yM), PC0
±(wu; y1, . . ., yM) (which

are defined in the same way as the corresponding spaces in Corollary 3.2). Thus, the as-

sertions of Corollary 3.2 remain true if we replace C0(wu), C0
+(wu), C0

−(wu), and C0
±(wu)

by the above spaces. (The second assertion remains true, since we may apply the Corollary

with wu(x)
∏

i6=k |x− yi|ε and v(x)
∏

i6=k |x− yi|ε instead of wu and v if y = yk is a common

zero of fwu and v.)

Using this result, we are even able to deal with piecewise C0
u-functions having jumps

in arbitrary points (where we may restrict on inner points of [−1, 1], since jumps in the

endpoints are not really jumps):

Proposition 4.2 Let −1 < ξ1 < . . . < ξm < 1 and let v(ξ1, . . . , ξm) be the ”logarithmic”

modification of v which vanishes in all ξi (defined similarly to the modification v± = v(−1, 1)

in Corollary 3.2). Then

SwI ∈ L
(
PC0(wu; ξ1, . . . , ξm), PCv(−1, ξ1, . . . , ξm, 1)

)
,

SwI ∈ L
(
PC0

+(wu; ξ1, . . . , ξm), PCv(−1, ξ1, . . . , ξm)

)
,

SwI ∈ L
(
PC0

−(wu; ξ1, . . . , ξm), PCv(ξ1, . . . , ξm, 1)

)
,

SwI ∈ L
(
PC0

±(wu; ξ1, . . . , ξm), PCv(ξ1, . . . , ξm)

)
.

Proof. Let J denote the set of those indices i for which v(ξi) 6= 0. We have already proved

SwI = S
wu

∏
i∈J | . − ξi|ε

wv

∏
i∈J | . − ξi|ε

I ∈ L
(
PC0

(+,−,±)(wu; ξ1, . . . , ξm), PC(v
∏

i∈J | . − ξi|ε)± (−,+, )

)
(since PC0(wu; ξ1, . . . , ξm) ↪→ PC0(wu

∏
i∈J | . − ξi|ε; y1, . . ., yM)). Thus, the proposition is

proved, if we can show that v(ξ1, . . . , ξm)Swf (f ∈ PC0(wu; ξ1, . . . , ξm)) is continuous in

neighborhoods Ni of the points ξi (i ∈ J), where the corresponding C(Ni)-norm can be

estimated by the norm of f . (This is even more than the assertion of the proposition.)

For this aim, let i ∈ J and set hi = [(fwu)(ξi + 0)− (fwu)(ξi − 0)] /wv(ξi). Then, the first

addend of the decomposition

Swf = Sw
(
f − hi w

−1χ[ξi,1]

)
+ hi Sχ[ξi,1]

belongs to PC(v
∏

j∈J\{i} | . − ξj |ε)± (apply the first assertion of this proof with the space

PC0(wu; ξ1, . . . , ξi−1, ξi+1, . . . , ξm) instead of PC0(wu; ξ1, . . . , ξm)), where the norm in this

space can be estimated by the norm of f . This yields the corresponding assertions with

C(Ni). The second addend, divided by 1 + | ln |x − ξi||, is also continuous on Ni. This

follows from (Sχ[ξi,1])(x) = ln(1− x)− ln |x− ξi|.
�
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5 The operator awI + SbwI

In many applications equations of the type (aI + SbI)f (+ . . . ) = g have to be solved,

where a, b, and g are given functions on (−1, 1) and f is looked for. For the numerical

solution of such equations, for example by projection methods, one may look for weighted

polynomials wPn as approximations of f , where w is an appropriated weight. (Later we will

see which weights are appropriated.) Equivalently, one can first transform the equation by

setting f = wf̃ and looking for f̃ instead of f . Then the operator awI + SbwI appears

and unweighted polynomials Pn are sought as approximations of f̃ . (This approach seems

to be better, since known results in the theory of approximation by polynomials are usually

formulated for unweighted polynomials.) A similar transformation leads to operators of the

type aw0I + bSw0I (w0: some weight) if the equation (aI + bSI)f (+ . . . ) = g is considered.

In the following two sections we study the mapping properties of awI + SbwI and

aw0I + bSw0I (more precisely, %−1(aw0I + bSw0I) with %−1 ∈ b−1Π and w0 = w%) in scales

of weighted approximation spaces of continuous functions, where we consider approximation

by unweighted polynomials (according to the above approach). The basis is the theory of

Sections 3 and 4. Hence, in all what follows we consider again some fixed weight w = wu/wv

of the form (3.2), i.e., w corresponds to power weights u(x) =
∏N

i=1 |x − xi|αi and v(x) =∏M
j=1 |x− yj|βj which satisfy (3.1).

For the coefficient functions a and b we give the following assumptions which have to

be satisfied in all what follows (without further mentioning):

a v−1 ∈ PCṽ l[x1,..., xN ] with l[x1, . . . , xN ](x) :=

(
1 +

N∑
i=1

∣∣ ln |x− xi|
∣∣)−1

,(5.1)

b ∈ PC0({x1, . . . , xN , y1, . . . , yM} \ {−1, 1}) ,(5.2)

where ṽ is defined in Theorem 3.1 and PC0({x1, . . . , xN , y1, . . . , yM} \ {−1, 1}) denotes the

space of all piecewise C0-functions with possible jumps in the inner zeros of uv. (The

exact definition of this space and its norm is given in Proposition 4.1.) We will see that

these assumptions ensure that all functions and all images of operators which we consider in

Sections 5 and 6 are well-defined and continuous on (−1, 1) \ {x1, . . . , xN , y1, . . . , yM}. In all

statements in which continuity in other points is claimed, this has to be understood in the

sense of limits.

In the present section we only consider the operator A := awI + SbwI.

Proposition 5.1 A ∈ L(C0
u,PCṽ).

Proof. The part awI of A belongs to L(C0
u,PCṽ), since fwu/l[x1, . . . , xN ] ∈ C (f ∈ C0

u)

vanishes in all xi (Lemma 3.7) and, consequently, the last factor on the right hand side of

ṽ awf = (l[x1, . . . , xN ] ṽ a v−1) · (v w−1
v ) · (fwu l[x1, . . . , xN ]−1)
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turns the jumps in xi of the first factor (which is piecewise continuous with possible jumps

in the zeros of uv) into zeros. Hence, awf ∈ PCṽ and, obviously (by Lemma 3.7), ‖awf‖ṽ ≤
c ‖f‖u,0. If we want to prove that also the second part SbwI of A belongs to L(C0

u,PCṽ),

then, in view of (4.1), it remains to show that bI ∈ L(C0
u,PC0

u(y1, . . . , yM)). But this is

easy, since we can use again that jumps in xi are transformed into zeros if we multiply by

fu (f ∈ C0
u): (bfu)(xi) = 0 for all i. Together with the algebra property of C0, this gives

the assertion (by similar considerations as in the proof of Remark 2.9).
�

We will use this proposition to obtain mapping properties of the operator A, restricted

on the spaces of the following scale Cγ,δ
u , γ > 0, δ ∈ R.

Definition 5.2 Let 0 < γ < ∞ and δ ∈ R. The space Cγ,δ
u is defined by

Cγ,δ
u :=

{
f ∈ Cu : ‖f‖u,γ,δ := sup

n=0,1,...
Eu

n(f) (n + 1)γ lnδ(n + 2) < ∞
}

.

In other words: Cγ,δ
u is the approximation space A(Cu, l

∞({(n+1)γ lnδ(n+2)}); {Πn})
(see the considerations after Definition 2.1). Especially, Cγ,δ

u is a Banach space which is

compactly embedded into C0
u (see [2], Theorems 3.12 and 3.33). Moreover, it is well-known

(at least in case of a Jacobi weight u, but newer results also deal with power weights) that

Cγ,δ
u can be described in terms of smoothness properties of its elements. Of course, this fact

is of great practical importance, but in the present section we do not need it. Later (in

Section 7) we come back to this characterization.

We will see that a decomposition of A into a multiplication operator and an operator

which maps polynomials into polynomials is very useful. In case wu ≡ 1 we will take the ana-

logue of (3.3), since in Section 3 we already made good experience with this decomposition. In

case wu 6≡ 1 we cannot go back to this decomposition by writing Af = (aw−1
v +Sbw−1

v I)(wuf),

since the nice property (2.13) of C0
u does not hold similarly for Cγ,δ

u . To obtain an appropri-

ated splitting of A in all cases, we introduce the monic polynomial p = pw with the following

property:

|w/p| is a power weight with exponents in (−1, 0], i.e.:

If |w(x)| =
∏L

i=1 |x− zi|µi with µi ∈ (ki − 1, ki], then p(x) =
∏L

i=1(x− zi)
ki .

(5.3)

Now, Af = awf + Sbwf can be written in the following form:

(Af)(x) =

∫ 1

−1

f(t)p(t)− f(x)p(x)

t− x
b(t)

w(t)

p(t)
dt + f(x)p(x)(Ap−1)(x)

=: ( [A− (pAp−1) · I] f ) (x) + [(pAp−1) · f ] (x)

(5.4)
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The first operator A− (pAp−1) · I maps polynomials into polynomials. If we can show that

A − (pAp−1) · I ∈ L(C0
u,Bv) (Bv is defined in (3.6)), then this implies A − (pAp−1) · I ∈

L(Cγ,δ
u ,Cγ,δ−1

v ). (Later we give the details.) First we prove A− (pAp−1) · I ∈ L(C0
u,PCṽ),

which is (in view of Proposition 5.1) equivalent to the assertion of the following lemma.

Lemma 5.3 (pAp−1) · I ∈ L(C0
u,PCṽ).

Proof. We have (pAp−1) · I = awI + (pSbwp−1) · I. The properties of

Sbwp−1 =

(
S

1

|p/w|
I

)(
|p/w|
p/w

b

)
can be concluded from Proposition 4.2, applied with 1 and |p/w| instead of wu and wv:

S|w/p|I ∈ L
(
PC0({x1, . . . , xN , y1, . . . , yM} \ {−1, 1}), PC|p/w|(−1,x1,...,xN ,y1,...,yM ,1)

)
. Thus,

Sbwp−1 ∈ PC|p/w|(−1,x1,...,xN ,y1,...,yM ,1). We remark that |p/w|(−1, x1, . . . , xN , y1, . . . , yM , 1)

= |p/w|(−1, x1, . . . , xN , 1), since all yj ∈ supp u are zeros of |p/w|. For the same reason,

|p/w|(−1, x1, . . . , xN , 1) does not contain logarithmic terms w.r.t. ±1 if v(±1) = 0 and

u(±1) 6= 0. It follows

w−1p l[x1, . . . , xN ]

1 + (uv)(−1) | ln(1 + . )|+ (uv)(1) | ln(1− . )|
· Sbwp−1 ∈ PC(x1, . . . , xN , y1, . . . , yM) .

In other words: (w−1pSbwp−1) · v−1 ∈ PCṽ l[x1,..., xN ]. Thus, for w−1pSbwp−1 we have the

same continuity properties as for a, so that the assertion awI ∈ L(C0
u,PCṽ) (see the proof

of Proposition 5.1) also holds for (pSbwp−1) · I.
�

Proposition 5.1 and Lemma 5.3 imply A− (pAp−1) · I ∈ L(C0
u,PCṽ). But we can even

prove that the images, multiplied by v (and not by ṽ), are bounded:

A− (pAp−1) · I ∈ L(C0
u,Bv) .(5.5)

Indeed, if for example (uv)(1) 6= 0, then u ∼ v ∼ |w| ∼ |p| ∼ 1 on [1 − 2ε, 1] and f|[1−ε,1]

(f ∈ C0
u) can be extended to a C0-function f̃ with f̃|[−1,1−2ε]

≡ 0 such that, with some

positive and Hölder continuous extension ũ of u|[1−2ε,1]
,

‖f̃p‖0 = ‖f̃u · p/ũ‖0 ≤ c ‖fu‖0 ∼ ‖f‖u,0

(since C0 is a Banach algebra; see the proof of Remark 2.9). Thus, for x ∈ [1− (ε/2), 1], we

may estimate∣∣∣∣∫ 1

−1

f(t)p(t)− f(x)p(x)

t− x
b(t)

w(t)

p(t)
dt

∣∣∣∣
≤ c

∫ 1

1−ε

∣∣∣∣∣(f̃p)(t)− (f̃p)(x)

t− x

∣∣∣∣∣ dt +
2

ε

∫ 1−ε

−1

|(fp)(t)− (fp)(x)| b(t)w(t)

p(t)
dt .

23



The first addend is bounded by c ‖f̃p‖0 ≤ c ‖f‖u,0 (see the proof of Lemma 3.4) and the

second by c ‖f‖u (since |fw|(t) ≤ ‖f‖uv
−1(t) and |fp|(x) ≤ c |fu|(x) for x ∈ [1− (ε/2), 1]).

Hence, Af − (pAp−1) · f is bounded in a neighborhood of 1 if (uv)(1) 6= 0 (analogously with

−1 if (uv)(−1) 6= 0) and (5.5) is proved.

From (5.5) we can conclude A− (pAp−1) · I ∈ L(Cγ,δ
u ,Cγ,δ−1

v ). For this, we only have

to apply the following lemma.

Lemma 5.4 Let k ∈ N0 be fixed and let B ∈ L(C0
u,Bv). If B(Πn) ⊆ Πn+k for all n, then

B ∈ L(Cγ,δ
u ,Cγ,δ−1

v ) for all γ > 0 and all δ ∈ R.

Proof. Let f ∈ Cγ,δ
u and fn ∈ Πn such that Eu

n(f) = ‖f − fn‖u. The we have Bfn ∈ Πn+k

and, consequently,

Ev
n+k(Bf) ≤ ‖B(f − fn)‖v ≤ c

∞∑
m=0

Eu
m(f − fn)

m + 1

≤ c ‖f − fn‖u

n−1∑
m=0

1

m + 1
+ c

∞∑
m=n

Eu
m(f)

m + 1

≤ c
‖f‖u,γ,δ

(n + 1)γ lnδ(n + 2)

n−1∑
m=0

1

m + 1
+ c ‖f‖u,γ,δ

∞∑
m=n

1

(m + 1)1+γ lnδ(m + 2)
.

The first sum can be estimated by c ln(n+1) and the second sum by c
[
(n + 1)γ lnδ(n + 2)

]−1

(use that (m + 1)ε lnδ(m + 2) is increasing for m ≥ m0). Thus, Bf ∈ Cv (since vBfn ∈ C

converges uniformly to vBf) and

‖Bf‖v,γ,δ−1 ∼ ‖Bf‖v + sup
m=k,k+1,...

(m + 1− k)γ lnδ−1(m + 2− k)Ev
m(Bf) ≤ c ‖f‖u,γ,δ .

(Use the substitution n = m− k in the supremum.)
�

Corollary 5.5 A− (pAp−1) · I ∈ L(Cγ,δ
u ,Cγ,δ−1

v ) for all γ > 0 and all δ ∈ R.

Proof. The assertion follows from (5.5) and Lemma 5.4, since (A − (pAp−1) · I)(Πn) ⊆
Πn+deg p−1 .

�

Remark 5.6 The coefficient function a does not appear in A − (pAp−1) · I. One may ask

why we did not set a ≡ 0 in the proof of A − (pAp−1) · I ∈ L(Cγ,δ
u ,Cγ,δ−1

v ). The reason is

that indirectly the multiplication operator awI with a satisfying a v−1 ∈ PCṽ l[x1,..., xN ] has

to be considered if we want to show (pSbwp−1) · I ∈ L(C0
u,PCṽ) (see the proof of Lemma

5.3). Now one may ask why we do not allow a v−1 ∈ Bṽ l[x1,..., xN ], since all considerations

are also possible if we replace weighted spaces of piecewise continuous functions by weighted
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spaces of bounded functions. The reason is that finally we want to obtain criteria which

ensure A ∈ L(Cγ,δ
u ,Cγ,δ−1

v ) (at least for some γ, δ), i.e. (pAp−1) · I ∈ L(Cγ,δ
u ,Cγ,δ−1

v ). But

the assumptions on b (which cannot be weakened, since we apply (4.1) in the proof of Propo-

sition 5.1) ensure (pSbwp−1) · I ∈ L(C0
u,PCṽ), so that we must have awI ∈ L(C0

u,PCṽ)

if A ∈ L(Cγ,δ
u ,Cγ,δ−1

v ). Of course, awI ∈ L(C0
u,PCṽ) is only possible if a is continuous on

(−1, 1) \ {x1, . . . , xN , y1, . . . , yM}, where the singularities of aṽ/v in [{yj}∪{±1}]\{xi} can

only be jumps. Hence, only in the points xi the assumptions on a can be slightly weakened.

For example, the existence of the one-sided limits of a l[x1, . . . , xN ] in the points xi is not

necessary (see the proof of Proposition 5.1). However, to avoid difficult notation it seems to

be better not to weaken the assumptions on a (which are general enough in our opinion).

In the following main theorem of this section we state the meaning of Corollary 5.5 for

the validity of the mapping property A ∈ L(Cγ,δ
u ,Cγ,δ−1

v ), and we give a sufficient criterion

which implies this property.

Theorem 5.7 Let γ > 0 and δ ∈ R be fixed, and let p = pw be defined in (5.3). For

A = awI + SbwI (a, b satisfying (5.1),(5.2)), the following assertions are equivalent:

(i) A ∈ L(Cγ,δ
u ,Cγ,δ−1

v ).

(ii) (pAp−1) · I ∈ L(Cγ,δ
u ,Cγ,δ−1

v ).

A sufficient condition which ensures the validity of (ii) (and (i)) is given by

Ap−1 ∈ Cγ,δ−1
|p/w| .(5.6)

Remark 5.8 In the proof of Lemma 5.3 we have seen that v−1Ap−1 ∈ PC|p/w| ṽ l[x1,...,xN ]

and that this property of Ap−1 implies (pAp−1) · I ∈ L(Cγ,δ
u ,PCṽ). It seems to be natural

that the stronger mapping property (ii) can only be expected if the corresponding stronger

property (5.6) of Ap−1 holds true. But, unfortunately, we are not able to prove this, i.e.,

the validity of the implication ”(ii)⇒(5.6)” is left as an open problem. Only in case u ≡ 1

(i.e., v = |1/w| = |p/w|) it is clear that (ii) implies (5.6). If we apply this with Ap−1I =

a(w/p)I + Sb(w/p)I instead of A, supposed that p/w is continuous (which ensures that w/p

is a weight of the form (3.2)), then we see:

If p/w ∈ C, a |w/p| ∈ PC|̃p/w| and b ∈ PC0 with jumps in the zeros of p/w, then

(5.6) is satisfied if and only if Ap−1I ∈ L(Cγ,δ
1 ,Cγ,δ−1

|p/w| ).

This means that, under the above conditions, the implication ”(ii)⇒(5.6)” is equivalent to

the implication ”A ∈ L(Cγ,δ
u ,Cγ,δ−1

v ) ⇒ Ap−1I ∈ L(Cγ,δ
1 ,Cγ,δ−1

|p/w| )”. Now we get some doubts

with respect to the validity of ”(ii)⇒(5.6)” in case u 6≡ 1. (Instead of this, we think that

25



(ii) is equivalent to some smoothness property of Ap−1 in which jumps in the zeros of u are

allowed.) However, it is remarkable that the weights u and v do not appear on the right hand

side of (5.6). This means that we have to check (5.6) if we want to find weights w which are

well-appropriated to transform the unweighted operator aI + SbI into a weighted operator

A = awI +SbwI which has good properties in polynomial approximation spaces, independent

of the possible choices for the weights of these spaces.

Proof of Theorem 5.7. The equivalence of (i) and (ii) is already proved (Corollary 5.5) and

it remains to show that (5.6) implies (ii). For this, let f ∈ Cγ,δ
u and take best approximations

fn ∈ Πn and gn ∈ Πn of f and Ap−1, respectively, i.e.,

Eu
n(f) = ‖f − fn‖u and E|p/w|

n (Ap−1) = ‖Ap−1 − gn‖|p/w| .

Then we obtain, for all n ∈ N,

Ev
2n−1+deg p(fpAp−1) ≤ ‖(fpAp−1 − fnpgn)v‖

≤ ‖(f − fn)u · (p/w)Ap−1‖+ ‖fnu · (p/w)(Ap−1 − gn)‖

≤ c ‖(f − fn)u‖+ ‖fn‖u‖(p/w)(Ap−1 − gn)‖ ≤ c ‖f‖u,γ,δ

(n + 1)γ lnδ−1(n + 2)
.

For n = 0 we have fn = gn = 0 and the above estimate yields ‖fpAp−1‖v ≤ c ‖f‖u . Now it is

easy to show that Ev
m(fpAp−1) ≤ c ‖f‖u,γ,δ (m+1)−γ ln1−δ(m+2) for all m ∈ N∪{0} (since

Em ≤ E2n−1+deg p for m ∈ {2n− 1 + deg p, 2n + deg p}), i.e. (pAp−1) · I ∈ L(Cγ,δ
u ,Cγ,δ−1

v ).
�

We finish this section with the consideration of some special cases in which (5.6) is

satisfied:

Proposition 5.9 Let γ > 0 and δ ∈ R be fixed. In all of the following cases, the operator

A is bounded from Cγ,δ
u into Cγ,δ−1

v .

(i) A = Aα,β = avα,βI + Sbvα,βI with constants a, b, α, β as in Proposition 3.5. (For

generalizations of this case we refer to [17], Section 9.5 and Theorem 9.9.)

(ii) b arbitrary (i.e., satisfying only (5.2)) and a = −w−1pSbwp−1. (Remember that this a

satisfies (5.1); see the end of the proof of Lemma 5.3.)

(iii) a and b such that

awp−1 ∈ Cγ,δ−1
|p/w| and

ϕ−rbwp−1 ∈ Cγ,δ
|p/w| for some r > γ (or r = γ if δ ≤ 0), where ϕ(x) :=

√
1− x2.

Especially, a and b have to vanish in the zeros and jumps of p/w and b also in ±1.
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(iv) awp−1 ∈ Cγ,δ−1
|p/w| and bwp−1χ[−1,1] ∈ Cγ,δ

|p/w|[−2, 2].

Proof. In case (i) we have p = −sign(α) vr,s, where r and s are 1 or 0 in dependence of

the sign 1 or −1 of α and β, respectively. Hence, w/p = −sign(α) vα̃,β̃ with α̃ = α − r and

β̃ = β − s. Aα̃,β̃ = −sign(α) (avα̃,β̃I + bSvα̃,β̃I) is again an operator as in Proposition 3.5,

where α̃ + β̃ = −1. Thus, Ap−1 = Aα̃,β̃1 = 0, i.e., (5.6) is satisfied (and, even more, we have

a special case of situation (ii)).

The assumption in (ii) is only a reformulation of Ap−1 = 0 (i.e., A is equal to the

operator A− (pAp−1) · I from Corollary 5.5).

To prove the assertion in case (iii), we first apply Corollary 5.5 in the non-weighted

case with |p/w| instead of wu and wv:

ln
1 + .

1− .
· I + S ∈ L(Cγ,δ

|p/w|,C
γ,δ−1
|p/w| ) .(5.7)

If we take into account that ϕr ln(1+ . )/(1− . ) belongs to Cr,−1
1 ⊆ Cγ,δ−1

1 ([7], Section 8.5),

then it is easy to prove that

bwp−1 ln
1 + .

1− .
=

bwp−1

ϕr
· ϕr ln

1 + .

1− .
∈ Cγ,δ−1

|p/w| .(5.8)

Moreover, the function ϕr belongs to Cr,0
1 ⊆ Cγ,δ

1 ([7], Section 8.5) and this implies bwp−1 =

ϕr · ϕ−rbwp−1 ∈ Cγ,δ
|p/w|. Hence, application of (5.7) to the function bwp−1 yields, together

with (5.8), Sbwp−1 ∈ Cγ,δ−1
|p/w| . By assumption, the other part of Ap−1 also belongs to Cγ,δ−1

|p/w| ,

i.e., (5.6) is satisfied.

In case (iv) we only have to mention that, after a linear transformation [−1, 1] →
[−2, 2], (5.7) holds similarly for the singular integral operator S[−2,2] on [−2, 2]. Thus,

ln
2 + .

2− .
· I + S[−2,2] ∈ L

(
Cγ,δ
|p/w|[−2, 2],Cγ,δ−1

|p/w| [−2, 2]
)

(5.9)

and we get Sbwp−1 = S[−2,2]bwp−1χ[−1,1] ∈ Cγ,δ−1
|p/w| (since ln(2 + . )/(2− . ) ∈ C∞[−1, 1]).

�

Of course, the conditions in (iii) and (iv) are very restrictive and further investigations

are necessary to find weaker assumptions which imply (pAp−1) · I ∈ L(Cγ,δ
u ,Cγ,δ−1

v ). In

view of the length of this paper we give up further considerations in this direction. We only

mention that probably one cannot give much weaker assumptions on a and b if one wants

to prove the stronger assertion (5.6) without supposing any further connection between

the parts awp−1 and Sbwp−1 of Ap−1 (as in (ii)). In other words: If the transformation

aI +SbI → awI +SbwI shall lead to an operator with good properties in pairs of polynomial

approximation spaces, where the upper bound for the parameter γ of these spaces shall be
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large, independent of the possible choices for the weights of these spaces, then one should

try to determine wp−1 in such a way that the ”bad parts” of awp−1 and Sbwp−1 disappear in

the sum awp−1 +Sbwp−1 = Ap−1. Now the question is, under which conditions on a and b is

it possible to find such a weight wp−1 (for which |wp−1| is an integrable power weight with

negative exponents)? In literature (see e.g., [17], Chapter 9) one often considers operators

with Hölder continuous coefficients, for which it is possible to find an appropriated weight w

such that the weighted operator A maps polynomials into polynomials (see the next section

for more details). For such operators one can show that Ap−1 ∈ Π, i.e. (5.6) holds for all

γ and δ. Maybe it is possible to generalize this known construction of the weight w to the

case of operators with piecewise Hölder continuous coefficients. We leave this as an open

question.

6 The operator ρ−1(aw%I + bSw%I)

Take the notation and assumptions from the beginning of the preceding section and choose

some function % : (−1, 1) \ {x1, . . . , xN , y1, . . . , yM} → C such that

P := b %−1 ∈ Π and % v−1 ∈ L1(−1, 1) .

Now we consider the operator

B := awI + PSw%I = %−1(aw%I + bSw%I) .

For example, we may take % = b, but in this case we get the operator

A := awI + SbwI

which we have already studied. The operator B is of interest if one wants to study integral

equations in which an operator of the type aw0I + bSw0I, w0 ∈ L1, appears. In this case one

can look for some % such that b/% ∈ Π and w = w0/% is a weight of the form (3.2). Then,

%−1(aw0I + bSw0I) is our operator B. We remark that the operators

aσI + π−1SbσI and aσI + PSσ0I = c
(
aσ0I + π−1bSσ0I

)
(6.1)

with Hölder continuous coefficients a, b : [−1, 1] → R (satisfying a2+b2 > 0) and appropriated

weight σ = σ(a, b) which are usually considered in literature (see [17], Chapter 9) fit in our

theory: For these operators we have σ = vα,βh with certain α, β ∈ (−1, 1) and some Hölder

continuous function h 6= 0. Moreover, it is usually supposed that c−1v−|α|,−|β| is a generalized

Jacobi weight. Particularly, c−1v−|α|,−|β| ∈ L1. Thus, the operators in (6.1) correspond to A

and B if we take w = vα,β, ã = ah, b̃ = bh/π and ρ = c−1h.
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If we look at the difference

(Af −Bf)(x) =

∫ 1

−1

P (t)− P (x)

t− x
%(t)w(t)f(t) dt ,(6.2)

which belongs to Πdeg P for all f ∈ Cu, then it becomes clear that, for all γ > 0 and δ ∈ R,

B ∈ L(Cγ,δ
u ,Cγ,δ−1

v ) if and only if A ∈ L(Cγ,δ
u ,Cγ,δ−1

v ) .(6.3)

(Remark that A − B ∈ L(Cu, (Πdeg P, ‖ . ‖)) and, hence, A − B ∈ L(Cu,C
γ,δ
v ) for all γ, δ.)

(6.3) means that we can use Theorem 5.7 to check whether B belongs to L(Cγ,δ
u ,Cγ,δ−1

v ).

Remark 6.1 If we do not suppose that P is a polynomial, but a continuous and suffi-

ciently smooth function, then usually (6.3) remains true up to a certain upper bound for

the value of γ. For example, if % ∈ L∞(−1, 1), then, for fixed f ∈ Cu, the right hand

side of (6.2) can be viewed as an operator Af applied to P , and the proof of Lemma 3.4

shows that Af ∈ L(C0,Bv) with ‖Af‖ ≤ c ‖f‖u . But Af maps Πn into Πn and it follows

Af ∈ L(Cγ0,δ0
1 ,Cγ0,δ0−1

v ), again with ‖Af‖ ≤ c ‖f‖u . This means that A−B ∈ L(Cu,C
γ0,δ0−1
v )

if % ∈ L∞(−1, 1) and P ∈ Cγ0,δ0
1 , i.e., in this case (6.3) is true for 0 < γ < γ0 and, if δ ≤ δ0,

also for γ = γ0.

7 Remarks and Generalizations

In the preceding sections we have studied the mapping properties of Cauchy singular integral

operators A = awI + SbwI and B = %−1(aw%I + bSw%I), %−1 ∈ b−1Π, with an arbitrary

fixed weight w of the form

w(x) =
L∏

i=1

[
sign(x− zi)

]ηi(x− zi)
µi , −1 ≤ z1 < . . . < zL ≤ 1, ηi ∈ {1, 2}, µi > −1

in pairs of approximation spaces based on Cu and Cv, respectively, where the power weights

u = |wu| ∈ L∞(−1, 1) and v = |wv| ∈ L∞(−1, 1) ∩ {v : v−1 ∈ L1(−1, 1)} correspond to a

representation w = wu/wv of the type (3.2). (We remark that w has a jump in zi if µi = 0

and ηi = 1. In this case we have α(zi) = β(zi) in all admissible representations (3.2) of

w.) As singularities of the coefficient functions a and b we have admitted jumps (or even

logarithmic singularities for a). Unfortunately, the corresponding assumptions (5.1) and

(5.2) depend on u and v. In other words: In dependence on the singularities of a and b,

there are restrictions on the possible choices of the weights wu and wv in (3.2). One may

ask for mapping properties in pairs of spaces those weights do not satisfy these restrictions.

Thus, let us consider a representation (3.2) of w which corresponds to arbitrary fixed power

weights u(x) =
∏N

i=1 |x− xi|αi and v(x) =
∏M

j=1 |x− yj|βj satisfying (3.1), and let

a ∈ PCl[ξ1,...,ξR] , b ∈ PC0(ξ1, . . . , ξR) , where − 1 = ξ1 < ξ2 < . . . < ξR = 1(7.1)
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(without supposing any connection between the singularities ξi and the zeros of u and v).

Then it is clear that awI ∈ L(C0
u,PCv l[ξ1,...,ξR]), bI ∈ L(C0

u,PC0(wu; ξ1, . . . , ξR)) (since

f ∈ C0
u implies fwu ∈ C0), and SwbI ∈ L(C0

u,PCv(ξ1,...,ξR)) (Proposition 4.2). Hence,

A ∈ L(C0
u,PCv l[ξ1,...,ξR]) .(7.2)

Of course (since the continuity in xi of the part wuf of awf = (a/wv)wuf has to be

understood in the sense of the limit limx→xi
(wuf)(x) = 0), we must mention that, from

now on, the images of operators have to be viewed as continuous functions on (−1, 1) \
{x1, . . . , xN , y1, . . . , yM , ξ1, . . . , ξR} (i.e., only on this set they are well-defined) and if conti-

nuity in other points is stated, then this has to be understood in the sense of limits.

For the part awI of A we have more than (7.2):

aw

l[x1, . . . , xN ]
I ∈ L(C0

u,PCv l[ξ1,...,ξR])(7.3)

because of Lemma 3.7, even if only a ∈ PCl[ξ1,...,ξR](x1, . . . , xN , y1, . . . , yM) (which means,

by definition, a l[ξ1, . . . , ξR] ∈ PC(ξ1, . . . , ξR, x1, . . . , xN , y1, . . . , yM)). If we apply this with

w−1p l[x1, . . . , xN ] Sbwp−1 instead of a (p from (5.3)), taking into account that, by Proposi-

tion 4.2 (applied with 1 and |p/w| instead of wu and wv; see also the proof of Lemma 5.3),

w−1p l[x1, . . . , xN ] Sbwp−1 ∈ PCl[ξ1,...,ξR](x1, . . . , xN , y1, . . . , yM) ,

then it follows (pAp−1) · I ∈ L(C0
u,PCv l[ξ1,...,ξR]) and, consequently,

A− (pAp−1) · I ∈ L(C0
u,PCv l[ξ1,...,ξR]) .(7.4)

As in Corollary 5.5 this implies

A− (pAp−1) · I ∈ L
(
Cγ,δ

u ,Cγ,δ−1
v l[ξ1,...,ξR]

)
for all γ > 0 and δ ∈ R .(7.5)

Now we want to come back to the weight v in the image space. For this we remark that, for

some sufficiently small constant C > 0 and for −1 = t1 < t2 < . . . < tS = 1, δ1, . . . , δS ≥ 0

defined by

{t1, . . . , tS} = {ξ1, . . . , ξR} ∪ {y1, . . . , yM} , δj =

{
βi if tj = yi

0 if tj 6∈ {y1, . . . , yM}

the following estimate of the norm ‖Pnv‖, Pn ∈ Πn (n ∈ N), holds true:

‖Pnv‖ ∼ max
j=1,...,S−1

‖Pn(tj+1 − . )δj+1( . − tj)
δj‖C[tj ,tj+1]

≤ c max
j=1,...,S−1

‖Pn(tj+1 − . )δj+1( . − tj)
δj‖C[tj+Cn−2,tj+1−Cn−2]
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(see [7], Theorem 8.4.8). On [tj +Cn−2, tj+1−Cn−2] we have l[ξ1, . . . , ξR] ≥ c/ ln(n+1) and

v ∼ (tj+1 − . )δj+1( . − tj)
δj . Hence,

‖Pnv‖ ≤ c ‖Pnv l[ξ1, . . . , ξR]‖ ln(n + 1) for Pn ∈ Πn and n ∈ N .

(c 6= c(n, Pn)). This implies that C0
v l[ξ1,...,ξR] is continuously imbedded into Cv (see [12], The-

orem 4.2 and Remark 4.3, or [2], Theorem 4.9). Now we apply Lemma 5.4 with v l[ξ1, . . . , ξR]

instead of u and with the embedding operator B ∈ L(C0
v l[ξ1,...,ξR],Cv). It follows that

Cγ,δ
v l[ξ1,...,ξR] is continuously imbedded into Cγ,δ−1

v for all γ > 0 and δ ∈ R. Together with

(7.5) we obtain A− (pAp−1) · I ∈ L(Cγ,δ
u ,Cγ,δ−2

v ) and similarly to Theorem 5.7 and assertion

(6.3) we get the following result:

Theorem 7.1 Let γ > 0 and δ ∈ R be fixed, and let p = pw be defined in (5.3). For A =

awI+SbwI and B = %−1(aw%I+bSw%I) with a, b satisfying (7.1) and % = b/P ∈ v L1(−1, 1)

(P ∈ Π), the following assertions are equivalent:

(i) A ∈ L(Cγ,δ
u ,Cγ,δ−2

v ).

(ii) B ∈ L(Cγ,δ
u ,Cγ,δ−2

v ).

(iii) (pAp−1) · I ∈ L(Cγ,δ
u ,Cγ,δ−2

v ).

A sufficient condition which ensures the validity of (iii) (and (i),(ii)) is given by

Ap−1 ∈ Cγ,δ−2
|p/w| .

Now we consider the question whether Theorems 5.7 and 7.1 can be generalized to

other scales of approximation spaces based on Cu and Cv, respectively. In other words:

We are looking for generalizations of Lemma 5.4 and of the implication ”Ap−1 ∈ Cγ,δ
|p/w| ⇒

(pAp−1) · I ∈ L(Cγ,δ
u ,Cγ,δ

v )”. Generalizations of Lemma 5.4 can be obtained with the help

of the reiteration theorem for approximation spaces ([10], Theorem 6.2 and Corollaries 6.3,

6.4). Another way is described in [11] (even in a general framework in which Cu, Bv, and

Πn can be replaced by arbitrary Banach spaces X, Y , and nested subspaces Xn ⊆ X ∩ Y ):

Lemma 7.2 ([11], Theorem 2.3) Let B = {bn}∞n=0 be a sequence of positive numbers such

that, for some C, ε > 0 and some n0 ∈ N,

bn+1 ≤ C bn (n ∈ N) and
{
b−1
n ln1+ε(n + 2)

}∞
n=n0

is decreasing

Moreover, let CB
u := A(Cu, l

∞(B); {Πn}) (see the considerations after Definition 2.1) and

set B/ log := {bn/ ln(n + 2)}. The space CB
u is continuously embedded into C0

u and

B ∈ L(C0
u,Bv) , B(Πn) ⊆ Πn+k (k: constant) imply B ∈ L(CB

u ,CB/ log
v ) .
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(The last assertion follows from bn ≥ c bn+k and [11], estimate (2.2), which asserts that

Ev
n+k(Bf) ≤ c ‖f‖CBu b−1

n ln(n + 2) for all n ∈ N and all f ∈ CB
u .)

Lemma 7.2 shows that Corollary 5.5 (which corresponds to bn = (n + 1)γ lnδ(n + 2))

can be generalized to the pair (CB
u ,C

B/ log
v ) if B satisfies the above conditions. Thus, for such

B, the first part of Theorem 5.7 (and also (6.3)) remains true with L(CB
u ,C

B/ log
v ) instead of

L(Cγ,δ
u ,Cγ,δ−1

v ). If in addition b2n ≤ c bn, then, by a slight modification of the proof, also the

last assertion of Theorem 5.7 can be generalized. Let us summarize:

Theorem 7.3 Let B satisfy the assumptions of Lemma 7.2 and suppose that b2n ≤ c bn

for all n ∈ N (c 6= c(n)). Moreover, let a, b satisfy the conditions (5.1),(5.2), and let

p = pw be defined in (5.3). Then, for A = awI + SbwI and B = %−1(aw%I + bSw%I) with

% = b/P ∈ v L1(−1, 1) (P ∈ Π), the following assertions are equivalent:

(i) A ∈ L(CB
u ,C

B/ log
v ).

(ii) B ∈ L(CB
u ,C

B/ log
v ).

(iii) (pAp−1) · I ∈ L(CB
u ,C

B/ log
v ).

A sufficient condition which ensures the validity of (iii) (and (i),(ii)) is given by

Ap−1 ∈ C
B/ log
|p/w| .

Now we want to compare our results with the known result from [9], Section 9.10, in

which it is shown that, for any α ∈ (0, 1) and any power weight µ(x) =
∏R

i=1 |x− ti|γi with

−1 = t1 < t2 < . . . < tR = 1 and α < γi < α + 1 for all i, the following result is true:

If a, b ∈ PC(t1, . . . , tR) with a | (ti,ti+1)
, b | (ti,ti+1)

∈ Hα([ti, ti+1]) , then

aI + bS ∈ L
(
Hα

0 (µ),Hα
0 (µ)

)
and aI + SbI ∈ L

(
Hα

0 (µ),Hα
0 (µ)

)
, where

Hα
0 (µ) = {f ∈ C(supp µ) : fµ ∈ Hα([−1, 1]) and (fµ)(ti) = 0 for all i } .

(7.6)

Here we denote by Hα(I) the space of all functions on I which are Hölder continuous with

exponent α. Obviously, aI, bI ∈ L(Hα
0 (µ),Hα

0 (µ)) and so it is sufficient to deal with S

instead of aI + bS and aI + SbI. First we will consider the weaker assertion

S ∈ L
(
Hα

0 (µ),Hα(µ)
)

(Hα(µ) := {f ∈ C(supp µ) : fµ ∈ Hα([−1, 1])} ) .(7.7)

Since every f ∈ Hα
0 (µ) can be written as f =

∑
i fi with fi ∈ Hα

0 (|x−ti|γi) and fi ≡ 0 outside

some closed neighborhood N(ti) of ti which contains no other tj, this mapping property is

proved if one can show that, for µt,γ(x) := |x− t|γ, t = ti and γ = γi fixed,

S ∈ L
(
H̃α

0 (µt,γ),H
α(µt,γ)

)
, H̃α

0 (µt,γ) := {f ∈ Hα
0 (µt,γ) : f ≡ 0 outside N(t)} .(7.8)
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With our theory it is not possible to obtain exactly this result, since we consider other pairs

of spaces. However, we are able to conclude ”almost” the same result: First we remark that,

obviously, Hα
0 (µt,γ) is continuously embedded into L∞

t,γ−α := {f : fµt,γ−α ∈ L∞(−1, 1)}.
Together with µt,γS − Sµt,γI ∈ L(L∞

t,γ−α,Cγ,−1
t,γ−α) (see Remark 6.1; Cγ,−1

t,γ−α := Cγ,−1
u with

u = µt,γ−α) we obtain µt,γS − Sµt,γI ∈ L(Hα
0 (µt,γ),C

γ,−1
t,γ−α). After transformation onto

[−2, 2], taking into account that f ∈ H̃α
0 (µt,γ) implies fµt,γχ[−1,1] ∈ Hα[−2, 2], we get

µt,γS − Sµt,γI ∈ L
(
H̃α

0 (µt,γ),C
γ,−1
t,γ−α[−2, 2]

)
.

In [14], (7.27) and proof of (7.22), it is shown, for t 6= ±1, ‖Pn µt,γ−α‖ ∼ ‖Pn(µt,γ−α +nα−γ)‖,
Pn ∈ Πn, n ∈ N. After transformation onto [−2, 2] it follows (since t 6= ±2)

‖Pn‖C[−2,2] ≤ c nγ−α‖Pn µt,γ−α‖C[−2,2] for Pn ∈ Πn and n ∈ N .

(c 6= c(n, Pn)). This implies that Cγ,−1
t,γ−α[−2, 2] is continuously imbedded into Cα,−1

1 [−2, 2] ⊆
Hα−ε := Hα−ε([−1, 1]) ([2], Theorem 4.9 and [10], Example 6.5). Consequently,

µt,γS − Sµt,γI ∈ L
(
H̃α

0 (µt,γ),H
α−ε
)
.

From (5.9), applied with 1 instead of |p/w|, it follows Sµt,γI ∈ L(H̃α
0 (µt,γ),H

α−ε). Thus,

µt,γS ∈ L
(
H̃α

0 (µt,γ),H
α−ε
)
, i.e., S ∈ L

(
H̃α

0 (µt,γ),H
α−ε(µt,γ)

)
,

which is weaker than (7.8). So we only get S ∈ L(Hα
0 (µ),Hα−ε(µ)) instead of (7.7). We can

also prove that, for f ∈ Hα
0 (µ), µSf vanishes in all ti: One can show that f ∈ Hα

0 (µ) implies

f ∈ Hδ
0(µ̃), where µ̃(x) =

∏R
i=1 |x − ti|γi−α+δ and 0 < δ ≤ α such that γi − α + δ < 1 for

all i. (This is only needed if max γi ≥ 1. Otherwise we can take δ = α.) From (5.9), now

applied with µ̃ instead of |p/w|, it follows, with some η > 0, Sf = S[−2,2]fχ[−1,1] ∈ Cη,−1
µ̃ ,

since, by Lemma 2.3, Hδ
0(µ̃) (considered as space of functions on [−2, 2]: f → fχ[−1,1])

is continuously embedded into Cη,0
µ̃ [−2, 2] (η = δ/k). This implies (µ̃Sf)(ti) = 0 and,

consequently, (µSf)(ti) = 0 for all i. (Alternatively, we can take δ < α and then this follows

from S ∈ L(Hδ
0(µ̃),Hδ−ε(µ̃)).) So we can conclude the following result, which is a little bit

weaker than (7.6):

aI + bS, aI + SbI ∈ L
(
Hα

0 (µ),Hα−ε
0 (µ)

)
.

The reason for this loss of ε is that, in our theory, we consider L(Cγ,δ
u ,Cγ,δ−1

v ) instead

of L(Cγ,δ
u ,Cγ,δ

v ). Thus, a loss of one power of ln n for the convergence order of the best

approximation errors of the image functions is admitted. We conjecture that in reality we

have no such loss. In the following special case this is already known, but the proof is so

hard that, in the framework of this paper, we give up further considerations in this direction.
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Remark 7.4 ([13], Proof of Theorem 3.1) Let β ∈ (0, 1) and let A−β,β be the operator

from Proposition 3.5. Then, for u = v0,β and v = vβ,0, A−β,β ∈ L(Cγ,δ
u ,Cγ,δ

v ) (γ > 0, δ ∈ R).

A similar result is true for Aβ,−β.

We mention that in [13] it is proved more (end of the proof of [13], Theorem 3.1):

Ev
2n(A−β,βf) ≤ c

∞∑
i=0

Eu
2in(f) for f ∈ C0

u and n ∈ N (c 6= c(n, f)) .

We finish this paper with two remarks about the characterization of Cγ,δ
u (γ > 0, δ ∈ R, u

a power weight with positive exponents) in terms of smoothness properties of its elements.

For this aim, let r ∈ N and define the modulus of smoothness

ωr
ϕ(f, t)u := sup

0<h≤t
‖u ∆r

hϕf‖
C
(
[−1+4r2h2,1−4r2h2]\ ∪

xi∈(−1,1)
(xi−4rh, xi+4rh)

)
+ inf

P∈Πr

‖(f − P )u‖C[−1,−1+4r2t2] + inf
P∈Πr

‖(f − P )u‖C[1−4r2t2,1]

+
∑

xi∈(−1,1)

inf
P∈Πr

‖(f − P )u‖C[xi−4rt,xi+4rt]

([5]). Here we denote by ∆r
hf the r-th central difference of f (i.e., (∆1

hf)(x) = (∆hf)(x) :=

f(x+h
2
)−f(x−h

2
), ∆r

hf := ∆h(∆
r−1
h f) for r > 1), and ∆r

hϕf means that, in (∆r
hf)(x), h has to

be replaced by hϕ(x), where ϕ(x) :=
√

1− x2. For h ≥ (2r)−1 we set [−1+4r2h2, 1−4r2h2] :=

∅ and ‖ . ‖C(∅) := 0.

Remark 7.5 ([5], Theorem 3.1) f ∈ Cu belongs to Cγ,δ
u if and only if, for some arbitrary

fixed r > γ, ωr
ϕ(f, t)u ≤ c tγ ln−δ(1 + t−1) for all t ∈ (0, 1]. Moreover, the expression

‖f‖u + sup
t∈(0,1]

ωr
ϕ(f, t)u

tγ
lnδ(1 + t−1)

defines an equivalent norm in Cγ,δ
u .

One can also use properties of derivatives of f to estimate the behaviour of Eu
n(f):

Remark 7.6 ([5], Corollary 3.1) Let αi 6∈ {1, . . . , r} for all xi ∈ (−1, 1) and let f ∈
C(r−1)

(
(−1, 1) \ {x1, . . . , xN}

)
∩ C(r−s−1)

(
(−1, 1)

)
, where s := min

{
r, minxi∈(−1,1)[αi]

}
and

C(−1)
(
(−1, 1)

)
:= C((−1, 1) \ {x1, . . . , xN}

)
. If f (r−1) ∈ ACloc

(
(−1, 1) \ {x1, . . . , xN}

)
and,

in case s < r, f (r−s−1) ∈ ACloc

(
(−1, 1)

)
, then

Eu
n(f) ≤ c n−r inf

P∈Πn

(
‖(f − P )u‖+ ‖(f (r) − P (r))ϕru‖

)
for all n ∈ N

(c 6= c(n, f)). Here we denote by ACloc(M) the set of all functions which are absolutely

continuous on every compact interval I ⊆ M .
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