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ON THE FREDHOLM INDICES OF ASSOCIATED
SYSTEMS OF WIENER-HOPF EQUATIONS

A. Bottcher, S.M. Grudsky, and I.M. Spitkovsky

For a bounded matrix function A of dimension n > 2 on the real line R, we denote by
W (A) the Wiener-Hopf operator on the direct sum of n copies of L?*(R4). The associated

Wiener-Hopf operator is the operator W(A) where A(z) := A(—z). We show that if W(A)

is Fredholm, then W(A) need not be Fredholm. Our main result says that given any two
integers x and v, there exist matrix functions A such that W (A) is Fredholm of index « and

~

W (A) is Fredholm of index v.

1. Introduction and main results. Given a subset Q of the real line R, we denote by
L}« () and L2(Q) the n x n matrix functions with entries in L?(£) and the column vectors
of height n with components in L?({2), respectively. For A € L, .. (R), the convolution
operator with the symbol A is the operator

C(A): LA(R) —» L:(R), fw— F'AFf,

where F is the Fourier transform,
F = t)e'"tdt € R).
(Ff)(z) / f(t)e (z )

Let Ry = (0,00). The compression of C(A) to L2(R) is referred to as the Wiener-Hopf
operator with the symbol A and will be denoted by W(A). Thus,

W(A) : Li(R*l') - L:(R+)7 f g PF_IAFfa

P being the orthogonal projection of LZ(R) onto L}(R,). For A € L (R), we define
A€ L= (R) by

nxn

A(z):= A(-z) (z € R).
The Wiener-Hopf operator W(A) is called the associated operator of W(A). A moment’s

thought reveals that W(A) is unitarily equivalent to the compression of C(A) to L3(R_),

where R_ = (—00,0).



If A is the Fourier transform of an L! matrix function, A = Fk with k € L., (R), then

nxn

W (A) and W(A) can be written in the form
WA = [kt =s)f()ds (¢ >0),

WA = [ ks = )f(s)ds (¢ >0).

The symbol A(z) = —signz (n = 1) induces the Cauchy singular integral operator on R,

wnno =~ [T @ >0),

mtJo §—

and in the corresponding formula for W(A) we have to replace s — ¢ by t — s. Finally, if
A(z) = € (n = 1), then

(1) (WA f)() = {f(to—l) 122;:)><1t<1

(2) WAE) = f(t+1) for t >0

It is well known that the answers to many questions on the operator W(A) depend not
only on the properties of W(A) itself but also on the properties of the associated operator
W(A). This is, for instance, the case when studying the finite section method for W(A)
(see [4], [6]) or the Fredholm determinants of the truncations of W(A) (see [14]). Moreover,
questions on the connection between left and right Wiener-Hopf factorizations of the matrix
function A are always questions on the relation between certain properties of W(A) and
W(A) (see (3], [11) |

Recall that a bounded linear operator T : H — H is said to be Fredholm if its range
Im T is closed and the dimension of the kernel Ker T := {f € H : Tf = 0} and the cokernel
Coker T := H/Im T are finite. In that case the Fredholm index of T is

Ind T := dim Ker T — dim Coker T'.

In the scalar case (n = 1), W(A) is the transposed operator of W(A) and therefore

W(A) is Fredholm of index « if and only if W(A) is Fredholm of index —«. This paper

~

concerns the connection between the Fredholm indices of W(A) and W(A) in the matrix
case (n > 2). To be more precise, we consider the following questions:

(a) Does the Fredholmness of W(A) imply that W (A) is also Fredholm?
(b) If W(A) and W(A) are Fredholm, does it follow that Ind W(A) = —Ind W(A)?

The answers to both questions are known to be in the affirmative in case A belongs to
certain classes of symbols, for example, if

A € [C(R) + H™(C4)lnxn U [C(R) + H2(C_)lnxn U PQCnxn



(see [4], [5], [11]). We will show that the two questions have nevertheless negative answers

for general A € LS, .(R). Here are our main results.

Theorem 1.1. Given n > 2, there exist A € L3 ,(R) such that W(A) is invertible but
W(A) is not Fredholm.

Theorem 1.2. Given n > 2 and two integers & and v, there are A € LS.
that W(A) is Fredholm of index k and W(A) is Fredholm of indez v.

Theorem 1.1 is implicitly already contained in [13, p. 1736]. Here we will give two
proofs of this theorem: one is in Section 3 and the other one is in Section 5. The first of
these proofs follows the idea of [13] and makes use of the factorization of certain matrices
into the product of four positive definite matrices, while the second proof is based on the
construction of an example in the class of periodic functions. Once the results of Section
3 are available, we will prove Theorem 1.2 in Section 4. In Section 5 we discuss Questions
(a) and (b) for almost periodic and semi-almost periodic matrix functions.

(R) such

We also remark that Theorem 1.2 can be sharpended significantly: given n > 2 and
two vectors (ki,...,Kk,) and (v1,...,vy) of integers, there exist A € L%, (R) such that the
so-called right and left partial indices of A coincide with («,,...,,) and (11,...,v,). The
proof of this stronger result goes beyond the scope of this article and will be given in a

separate paper.

2. Auxiliary results. Let H2, (R) stand for the matrix functions in L% _(R) all

entries of which are nontangential limits a.e. on R of bounded analytic functions in the
upper complex half-plane. It is easily seen that

3) W(F;GH,) = W(F;)W(G)W(H,)

whenever Fy, H, € H®

nxn

(R) and G € L, (R). Here F} is the Hermitian adjoint of F,.
The collection of all H, € Hgy, (R) for which H}! also belongs to H,,(R) will be denoted

nxn nxn

by GHS, ,.(R). From (3) we infer in particular that W(H, ) is invertible if H, € GHZ,, (R).

A matrix function G € L%, (R) is said to be uniformly positive definite if there is an

€ > 0 such that (G(z)(,¢) > €||¢||* for all ¢ € C" and almost all z € R.

Theorem 2.1. A matriz function G € L, (R) is uniformly positive definite if and

nxn
only if it can be represented in the form G = H, H} with H, € GH, (R).

nxn

For a proof of this well known fact see [5, p. 178] or [11, p. 268]. =

Let C(R) be the set of all continuous functions g on R which have finite limits g(£o0)
at too, and let C(R) denote the collection of all g € C(R) for which g(—o0) = g(+00). If

F € [C(R)]uxn and G € L (R), then
(4) W(FG) - W(F)W(G) and W(GF) — W(G)W(F) are compact

(see, e.g. [4, p. 402]). The following well known theorem provides us with a Fredholm
criterion and an index formula for Wiener-Hopf operators with symbols in {C'(R)],xn.

Theorem 2.2. Let F' € [C(R)]uxn. For W(F) to be Fredholm on L2(R,) it is necessary
and sufficient that det F'(z) # 0 for all £ € R U {xo00} and that none of the eigenvalues



£1,...,& of F71(—00)F(+00) is located on (—00,0]. If W(F) is Fredholm, then

1 1 &
5 dW(F) = —— © 43 agé;
(5) Ind W(F) 271'{a.rg det F}>°_ + . jzlarg &,

where {argdet I} _ is the increment of any continuous argument arg det F(z) of det F'(z)
as T moves from —oo to +oo and where arg¢; is the argument of §; taken in (—m,m).

Proofs can be found in [4, p. 239], [5, p. 171], [11, p. 198]. m

Let APW denote the collection of all almost periodic functions f with absolutely con-
vergent Fourier series:

z) =3 fie™", AN ER, Y |fil <oo.
J J

A matrix function F € APW,, is said to possess a right canonical APW factorization if
it can be represented in the form F = F_F, where

F* (F) ' Fy,F7' € APWoy N HY L (R).

nxn

If F € APW,, has a right canonical APW factorization F' = F_F+, the so-called geo-
metric mean d(F') € C™*" is defined as

©) )= (Jim o [ F-@lde) (Jim 5 [ Prtore)

one can show that the right-hand side of (6) is independent of the particular factorization
F=F_F,.
Theorem 2.3. For F € APW,x, the following are equivalent:
(i) W(F) is Fredholm on L2(Ry);
(ii) W(F) is invertible on LZ(R.);
(iii) F' has a right canonical APW factorization.
We denote by SAPW, y, the set of all matrix functions F of the form

F(z) = (1 - u(z)) Fi(z) + u(e) F() + Fo(z)

where u € C(R) is a fixed function such that 0 < u < 1, u(~00) = 0, u(+o00) = 1, where
Fy, F, € APW,4,, and where Fy € [C(R)}nxn is a matrix function for which Fo(oo) is the
zero matrix. The SAP stands for “semi-almost periodic”.

Theorem 2.4. Let F' € SAPW,y,. The operator W(F) is Fredholm on L%(R,) if and
only if the following three conditions are satisfied:

(a) det F(z) # 0 for allz € R;

(b) Fi and F, have right canonical APW factorizations;

(c) none of the eigenvalues &, ..., & of (d(F1))~'d(F) lies on (—00,0].
In that case the index of W(F) is given by formula (5).
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The scalar versions of Theorems 2.3 and 2.4 are due to L. Coburn, R. Douglas, I. Goh-
berg, I.A. Feldman, and D. Sarason. In the matrix case, these theorems were established
in [8] and [9].

Finally, our proof of Theorem 1.2 will have recourse to the following result, which is
known to workers in the field.

Theorem 2.5. Let F € L™

nxn

(R) and suppose W(F') is Fredholm of indez k. For a
natural number m > 2, define F(™ ¢ L% _(R) by

- ()

Then W(F(™)) is Fredholm of index mk.

Proof. The easiest way to see this is to pass to Toeplitz operators. Let T be the complex
unit circle and let G be a matrix function in L3, (T). Denote by Gy € C™*" (k € Z) the

Fourier coefficients of G. Further, let I*(Z;,C") stand for the C"-valued {2 space over
Z, :={0,1,2,...}. The operator induced on {?(Z,,C") by the matrix

Go Gy Gy
G Gy G
(7) G, G Go

is called the Toeplitz operator with the symbol G and is denoted by T'(G).

Given F € L, . (R), define G € L, (T) by
A+t
G(t) = F(zl ——t)'

One can show (see, e.g, [4, p. 397]) that there exists an isometric isomorphism U of L2(R.)
onto [%(Z,,C") such that

(8) ‘ W(F)=U"'T(G)U.

Consequently, T'(G) is Fredholm of index x together with W (F). Now put GU™)(t) := G(t™).
For the sake of simplicity, let m = 2. If T(G) is given by the matrix (7), then T(G®) has
the matrix

Go 0 G_, ©
0 Go 0 G_
(9) Gi 0 Gy 0

0 G, 0 Go

By appropriately permuting the rows and then the columns of the matrix (9), we get the
matrix

Go Gy ... 0 0
G, Go ... 0 0
(10) : 0 0 .. Gy G

0 0 .. Gy Gy



Since (7) induces a Fredholm operator of index &, we see that (10) and thus also 9 represents
a Fredholm operator of index 2k. The same argument works with 2 replaced by m and
therefore shows that T'(G(™)) is Fredholm of index mk.

Changing in (8) G to G™ and F to F(™ and taking into account that

A+ (e =)/ (et )"+ (@ )7 .
L= (@-0)/(z+)™  (e+)™—(z—1)"

we arrive at the conclusion that W(F(™)) is Fredholm of index m«. m

3. Non-Fredholm associated operators. In this section we give a proof of Theorem

1.1 which is based on an idea of [13]. It suffices to prove this theorem for n = 2: if
A € L,(R), W(A) is invertible, and W(A) is not Fredholm, then

A 0 o0
F = ( 0 In—2 ) € Lnxn(R)
generates an invertible operator W(F') for which W (F) is not Fredholm.

Let us for a moment suppose that we have a matrix M € C?*? with two negative
eigenvalues and four positive definite matrices B(%o00), C(£00) in C?*2 guch that

(11) M = C ™ (+00)B ™} (+00) B(—00)C(—00).
Define B, Ce [C(ﬁ)]zxz by
(12) B(z) = (1 — u(z)) B(~o0) + u(z) B(+o00),

(13) C(z) = (1 — u(z))C(—o0) + u(z)C(400)

where u € C(R) is any fixed function such that 0 < u < 1, u(~o0) = 0, u(+oo) = L.
Obviously, B and C are uniformly positive definite matrix functions. Hence, by Theorem
2.1, -
(14) B=B.B}, C=C,C] with B;,Cy € GH,(R).

Put A := B:C;. Then, by (3), W(A) = W(B;)W(Cy), which shows that W(A) is

invertible.

Contrary to what we want, let us assume that W(A) is Fredholm. Since

Eé = B.{,E:é*.é:_ = B+ AC

+
and I§1, C’; € GHE,(R), we deduce from (3) that W( C) is also Fredholm. By virtue of

Theorem 2.2, no eigenvalue of

(BC)™(—00)(BC)(+00) = (BC)™(+00)(BC)(~00) =

= C7}(400) B (4+00)B(—00)C(—00) = M

is located on (—o0,0]. However, we supposed that M has an eigenvalue on (—00,0). This

contradiction proves that W(A) cannot be Fredholm.
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We are left with the problem of obtaining the representation (11). There are at least
two possibilities to solve this problem. The first is based on a beautiful result by Ballantine
(1], [2] (also see [7, Problem 10 on p. 295]) which says that a matrix M € C"*" s the
product of four positive definite matrices from C™*™ if and only if

det M >0 and M ¢ |J{-AI,}

A>0

where I, is the n x n identity matrix. Thus, taking M = diag(~2,—1), which has two
negative eigenvalues, we can have recourse to Ballantine’s theorem to deduce that there
exist four positive definite matrices B(+o0), C(+00) satisfying (11).

The second possibility of producing (11) is simply to construct concrete examples. Put

1 ;@ 1 0

(15) B(00) = L Bleo)= |
2 1 0 —=
% i V46
- 1 _)Q I 0
(16) C(~00) = L Clheo)=|
0 -
-2 Vi
By Sylvester’s criterion, these four matrices are positive definite. Equality (11) is true with
7 3&2
£ _

69v2 23
2

M

and the eigenvalues of this matrix are —(1 4 3v/2/8) € (—o0,0).
At this point the proof of Theorem 1.2 is complete.

4. Associated operators with prescribed indices. We now proceed to the proof
of Theorem 1.2.

Define B(+o0),(C(+00) by (15), (16) and let B = B, B}, C = C4C} be as in the
previous section. Put D = B;C, and F = BC. For € > 0, set

D, := D +eB;'R(C})™

O%i

0 oyi
If € is sufficiently srﬁall, then W(D,) is invertible together with W(D) = W (B} )W (Cy).
We have

where

R(z) := (1 - u(2))

B,D.C} = F +¢R,

7



whence, by (3) _ _ _
W(B)W(D)W(C3) = W(F +eR).
Consequently, W(D,) is Fredholm if and only if so is W(F + €R), in which case both

operators have the same index. To check whether W(F +€R) is Fredholm and to determine
the index, we employ Theorem 2.2. Let F' = (fjx)3,=,. By the choice of R,

det(F(2) + (o)) = det Flz) + L EONF o) — fo(@)5va)

and since fu - f215\/2— is real-valued function and det F(:c) > 0 for all z € R, it follows
that det F'(z) # 0 for z € bf R and

(17) lim {arg det(F + eR)}>, = 0.
The eigenvalues of _ _ _
(F(—00) + eR(~00)) ™ (F(+00) + e B(+c0))
= (F(+ 00) 4 e R(+00)) "' F(—o0) + e R(—0o0))

(AR PRV ¥
692 24 e

are €;/5 = —1 +ei+ VA with A = 9/32—¢%. Thus, W (F +¢R) is Fredholm due to Theorem
2.2. As

(19 im (arg & + arg ) = 27
and Ind W(ﬁ’ + €R) must be an integer, we obtain from (17), (18) and Theorem 2.2 that
W (F + €R) has index 1 for all sufficiently small & > 0.

Thus, W(D.) is also Fredholm of index 1. Theorem 2.3 now implies that W(D{™) is
Fredholm of index zero and that W(D{™) is Fredholm of index m > 1. The operator
W((D{™)*) is therefore again Fredholm of index zero, wheras W((D("‘)) ) is Fredholm of
index —m < —1. In summary, for every m € Z we can construct G € L5%,(R) such that

W(G) is Fredholm of index zero and W(G) is Fredholm of index m.

Now, for k € Z, let by(z) = ((z + i)/(z — ©))* (z € R). It is well known that W (be) is
Fredholm of index k on L}(R). Finally, put

by 0
A:(G(O 1) 0 1.
0 In—2

Then A € LS, (R), and from (4) we infer that W(A) and W (A) are Fredholm with

Ind W(A) = Ind W(G) + Ind W(b) = k,
Ind W(A) = Ind W(G) + Ind W(by) = m — k.

The choice k = k and m = v + k completes the proof of Theorem 1.2.

8



5. Almost and semi-almost periodic symbols. Here is a second proof of Theorem
1.1. Put

Then A = A_A, with

(19) rw=( L 0) aw= ().

and since A*, Ay € GHg,(R), we see that W(A) is invertible. On the other hand, A =
H_DH, with

@= (1) pa=( L) me@=(5 7).

~

As H*,H, € GH33,(R), the Fredholmness of W(A) would imply that W (D) is Fredholm.
However, from representations (1) and (2) we infer that W(D) has infinite kernel and
cokernel dimensions. m

Thus, a negative answer to Question (a) may be given within the class APW,, ..

Now let us turn to Question (b). Theorem 2.3 implies that the answer to Question (b)
is in the affirmative provided A € APW,.,.. Let AP be the closure of APW in L(R). If
A€ AP, and W(A) is Fredholm of index &, then the operator W(B) is Fredholm of the
same index for all B € APW,., in some open neighborhood of A. Theorem 2.3 therefore
implies that k = 0. Consequently, even within AP, , the answer to Question (b) is yes.

It is well known that much evil with Wiener-Hopf operators begins with semi-almost
periodic symbols (see, for example, [3, Fig. 3 on p. 61]). This experience is supported by
the following result, which shows that the answer to Question (b) is already negative within

SAPW, .
Theorem 5.1. Ifn >'2, then there exist A € SAPW,xn such that W(A) is invertible

and W(A) is Fredholm of indez 1.
To prove this theorem, we need an auxiliary result which goes back to Sarason [12].

Lemma 5.2. Let d be a function in C(R) and suppose d(+oo) = +1. Then there is a
function h € H*(R) such that

lim |e — d(z)h(z)| = 0.

lz| =300
Proof (after [10]). The function

sin z 1

plz) =m z w2 — 2?2

is an entire function-and it is easily seen that there is a constant M < oo such that

|Im z|

e
<M——- .
lp(2)] < NRE forall ze C

9



Put 5
(20) o() = [ w(Q)dc.

Then ® is also entire. If Imz > 0, we can take the integral in (20) along the line segment
[0, z] to obtain that

Imz

14+ {¢P

[“®(2)] < e "M ldd] < N < oo,

which shows that h(z) := €*®(2) is a bounded analytic function in the upper half-plane
C;. On identifying h with its boundary function on R, we get h € H>*(R). Let 0 := ¢|R.

Then
© sinz
o(to0) = /o 2/ p(z)ds = _/ z 7r2—a:2

/ smx—(—— — )d:c
2 -7 zIT+m7

- £ / (231nx+sm(x—7r)+sm(:c+7r)) i
T J-oco

T T—m z+m

1 [ si
_ _/ sinz

mJ—o0o T

and o(—o00) = —o(+00) = —1. Consequently,

le® — d(z)h(z)| = |1 — d(z)o(z)| = 0 as |z| » oco0.

Proof of Theorem 5.1. 1t is sufficient to prove the theorem for n = 2. For € > 0, put

Do) = ( iy e )

where d € C(R) and d(o00) = 1. Let h € H*(R) be as in Lemma 5.2 and, for € > 0, set

o= (3 ). mio= (3 )

Consider

F(z) = Hy(z)De(c)H-(2)

_ | ed(z) - e — d(z)h(z) |
e — d(z)h(z) —e7'((¢ — d(z)h(2))h(z) + h(z)e =) |

From Lemma 5.2 we see that F. € [C(R)]2x2 and that

(21) R = (7 Je ). Ao = § e )

10



Since
o oo)Firon) = M reoit-o0) = (310 )),
Theorem 2.2 implies that W (F.) is not Fredholm.

Now let

Ge(z) = F.(z) + °K(z) where K(z)= ( di(z) 0 )

with any functions d;,d; € C(R) such that
dl(—OO) = i, dg(—OO) = —1:, d1(+00) = d2(+00) =0.
Then G, € [C(R)}ax2 and, by (21),

Ge(~00)=(_68ri63 1/621.63), G5(+00)=(8 —?/5)-

The arguments of the eigenvalues of

é;l(—oo)és(+oo) = Ge_l(+oo)G€(~—oo) = ( - —(;_ e -1 -(:-ies )

go to m as € — 0, and since, for z € R,

det G (z) = det F.(z) + O(®) = — det D.(z) + O(c®) = —1 + O(%)

as € — 0, we conclude from Theorem 2.2 that W(G.) is Fredholm of index 1 for all € > 0
small enough.

Finally, choose a sufficiently small ¢ > 0 and put
A(z) = H;'()Ge(z)H-"(z)L_(z) where L_(z)= ( (1) e‘l ) :

Clearly, A € SAPW,y,. By (3),
W(A) = W(H YW (G)W(H-M )W (L),

and as (ﬁ;l)*, H-',L_ € GHZ,(R) and W(G,) is Fredholm of index 1, we see that W (A)
is Fredholm of index 1. On the other hand,

(22) A = HI'GHI'L_=H;"(F.+e’K)H'L_
= D.L_+H'KH™'L_

= DoL--f'E(O 0

311171
4 O)L_+5 H'KH'L_.

The operator W(DyL_) is invertible, because for

eonia- (5 8) (87 )=(5 )



we have the factorization DoL_ = A_A4 with A_, A, given by (19). Since, obviously,
IH ool H= loo = O(1/€%) as € 0,
we infer from (22) that W(A) is invertible for all sufficiently small ¢ > 0. m

Let SAP denote the closure of SAPW in L*(R). It is well known [12] that SAP
actually coincides with the smallest closed subalgebra of L>(R) which contains APUC(R).
We now sharpen Question (b) as follows:

(c) Given two integers k and v, is there an A € SAP,«, (n > 2) such that W(A) is

Fredholm of index x and W(A) is Fredholm of index v?

Theorem 5.1 shows that the answer is in the affirmative for (x,v) = (0,1), and using this
theorem it easy to produce the desired symbols for (x,r) = (0, —1) and then for arbitrary
(k,v) subject to the condition |« + v| < 1. To go further we cannot have recourse to
Theorem 2.5 as in Section 4, because for m > 2 the transformation A — A{™) does not
leave SAP invariant (note that if A € SAP is discontinuous at infinity, then A has
exactly m — 1 discontinuities on R, while functions in SAP are continuous on R). The
following theorem shows that the answer to Question (c) is no in general.

Theorem 5.3. If A € SAP,xn and both W(A) and W(A) are Fredholm, then
|Ind W(A) + Ind W(A)| < n — 1.
Proof. Since SAPW is dense in SAP, it suffices to prove the theorem for A € SAPW, ..

In that case we obtain from Theorem 2.4 that

J

1 1
IndW(A) = —Z—W{arg det A} + .

n
arg ;,
=1

~ 1 | ~
Ind W(A) = ﬁ{arg det A} + 7 > arg;,

=1

where arg {;, arg §; are certain numbers in (—m, 7). Adding these two equalities we get

~ 1
|Ind W(A) + Ind W(A4)| < 2—7r(n7r +nr)=n. =

For n = 2, Theorems 5.1 and 5.2 provide us with a complete picture of the situation.

We remark that Theorem 5.3 can be considerably generalized: if A € L, (R) has at

nxn

most d (essential) discontinuities on R U {oc0} and if both W(A) and W(A) are Fredholm,
then
|Ind W (A) + Ind W (A)| < d(n —1).

The proof of this result requires tools different from those of Section 2 and will be presented
in a forthcoming paper.
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MATRIX FUNCTIONS WITH ARBITRARILY
PRESCRIBED LEFT AND RIGHT PARTIAL INDICES

A. Bottcher, S.M. Grudsky, and I.M. Spitkovsky

We prove that if n > 2 and g, A are two given vectors in Z™, then there exists a matrix function
in L33, (T) which has a right Wiener-Hopf factorization in L? with the partial indices ¢ and
a left Wiener-Hopf factorization in L? with the partial indices .

1. Introduction and main result. Let L? := L?(T) (1 < p < 0o) be the usual Lebesgue
spaces of complex-valued functions on the unit circle T and denote by H} := H}(T) the
corresponding Hardy spaces,

HY :={feLl: fr,=0for Fm >0}

where { f }:mez is the sequence of the Fourier coefficients of f. Given a set E, welet E,y,
and E, stand for the n x n matrices with entries in E and for the column vectors of height
n with components in E, respectively. If E is a set of functions on T, we define GE,, as
the collection of all matrix functions A € E, ., for which A~! exists almost everywhere on
T and is also a matrix function in E, ..

We denote by R the rational functions without poles on T and we think of R as a
subset of L. For f € R, the Cauchy singular integral

(SHE) = i MdT

mJT 1T—1

(teT)

exists in the principal value sense, and it is well known that S extends to a bounded operator
on L2

Now let E be a subset of L2. A right Wiener-Hopf factorization in E of a matrix function
A € L%, is a representation

nxn
| A1) = A_(O)M(D)A4 ()
for almost all t € T such that

(i) A- € GIEN H)uxn, Ay € GIEN H |pxn,
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(ii) M(t) = diag (to,...,t%) with g; € Z for all j,
(iii) the operator A7!SA,I is bounded on L2.

Notice that if f € R, then A;?SA+f is a well-defined element of L. Condition (iii) means
that the map f— A7'SA, f is actually a map of R, into L? which extends to a bounded
linear operator of L2 into itself. Analogously, a left Wiener-Hopf factorization in E of a

matrix function A € L2, is a factorization

A(t) = B,4(t)N(t)B_(t)
for almost all T € T in which
(") By € GIEN HY)uxn, B- € G[EN H]m,
(ii") N(t) = diag (t,...,t*) with A; € Z for all j,
(iii’) the operator By SB;'I is bounded on L2.

In what follows we abbreviate “left and right Wiener-Hopf factorization in E” simply to
“left and right E factorization”. Furthermore, we put E* := EN H}.

The above types of factorizations were introduced by Gohberg and Krein [5] and by
Simonenko [7], [8], [9], and they have since then been studied by many authors (see, e.g.,
the books [2], [4], [6]). They are of great importance in the Fredholm theory of block
Toeplitz and related operators.

We begin by summarizing a few well known results concerning Wiener-Hopf factoriza-
tions the proofs of which can all be found in [2] and [6].

Theorem 1.1. If A € L, admits a right (resp. left) L? factorization, then the integers

01, -, 0n of (ii) (resp. the integers Ay, ..., A, of (ii’)) are uniquely determined up to their
order.

These integers are called the right (resp. left) partial indices of A. The sums of the
partial indices,

o1+ +o, and A +---4 A,

are referred to as the right and left total indices of A, respectively. In what follows it will
be convenient to regard the right and left partial indices as vectors ¢ = (g, .. .y 0n) and
A= (A,...,A,) in Z™

In case A € L33, has a right E factorization with E C L*, condition (iii) is auto-
matically satisfied and therefore superfluous. An analogous remark can be made for left
factorization.

The (block) Toeplitz operator T(A) generated by a matrix function A € L, is given by
the block matrix (A;_4)$%-, on the C"-valued I* space {*(Z,C") over Z, := {0,1,2,...}.
Here A,, € C,x, stands for the mth Fourier coefficient of A. The operator T(A) is said to

be Fredholm if its range Im T'(A) is closed and the kernel

KerT(A) := {z € I*(Z4+,C") : T(A)z = 0}
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as well as the cokernel
Coker T(A) := I*(Z4+,C")/Im T(A)
have finite dimensions. If T'(A) is Fredholm, the defect numbers a(7'(A)) and 3(T(A)) are
defined by
a(T(A)) := dimKerT(A), B(T(A)):= dimCoker T'(A),

and the difference of the defect numbers is referred to as the index of T(A):
Ind T(4) = a(T(4)) — B(T(A)).

The following theorem is a central result of [5], [7], [8].
Theorem 1.2. Let A € L= .. The operator T(A) is Fredholm on I*(Z,,C™) if and

nxn'

only if A€ GL®, and A admits a right L? factorization. In that case

oT(A)) = 3 (—e;), B(T(A) =2 e;

Q]<0 Q]>0

and hence

IndT(A) = —(e1+ -+ en),
where gy, ..., 0, are the right partial indices of A.

For A € L%, define A € L%, by A(t) := A(1/t) (t € T). The Toeplitz operator T'(A)
is referred to as the associated operator of the Toeplitz operator T(A). Since A has a right
L? factorization with the right partial indices p; if and only if A has a left L? factorization
with the left partial indices —p;, we see that left L? factorization of A plays the same role

in connection with the Fredholm properties of T'(A) as right L? factorization of A does for
T(A). '

Recall that R stands for the bounded rational functions on T. We denote by C the
collection of all continuous functions on T.

Theorem 1.3. (a) Ev;ary A € GR,«n admits both a right and a left R factorization.

(b) If A € GCrxn, then A need not have right and left C factorizations, but A always
possesses right and left L? factorizations. The right total index Y p; and the left total index
Y- Aj are given by

Zgj = Zz\j = wind det A,

where wind det A is the winding number of det A about the origin.
(c) Matriz functions A € GL,, have in general neither a right nor a left L? factoriza-

nxn
tion.

In the scalar case (n = 1), there is no difference between right and left factorizations.
The situation changes dramatically in the matrix case (n > 2). First, as already observed
in {10] (and made explicit in [1}), there are matrix functions in L3}, which have an L*
factorization of the one type (right or left) but do not possess an L? factorization of the
other type (left resp. right). Moreover, we know from [5] that there exist A € GR;y, for
which the pairs of right and left indices may be different, say (0,0) and (—1,1).
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For “nice” matrix functions A, the right and left total indices of L? factorizations always
coincide. This is, for example, the case if

A€ [C+ HPlaxn U[C + H)n U PCryy

and A has both a right and a left L? factorization; here PC stands for the closed algebra
of all piecewise continuous function on T. The following result shows that even for “very
nice” matrix functions the coincidence of the total indices is all we can state without further
information.

Theorem 1.4 (Feldman and Markus [3]). Let n > 2. Given any two vectors
0, A € Z" such that 3Jp; = 30 Aj, there exist A € GRuxn whose vectors of right and left
partial indices are p and A, respectively.

In the case n = 2 as well as in the case where p or A is a so-called stable collection of
integers (which means that |o; — 0| < 1 for all 7,k or |A; — A¢| < 1 for all 5, k), this theorem
was previously established in [11].

Factorable matrix functions with different right and left total indices were only recently
constructed in our paper [1]. Here is the precise result.

Theorem 1.5 [1]. Let n > 2 and let & and v be any two integers. There exist matriz
functions A € GLY,,, such that A has a right L* factorization with the right total index
and a left L? factorization with the left total index v.

We remark that the k = 0 version of Theorem 1.5 can be strengthened: in [1], we
produced an A € GL;3,, such that A has a right L? factorization and all right partial
indices are zero and such that A has a left L? factorization with prescribed left total index

V.

The following theorem is the result of the present paper. It unites Theorems 1.4 and
1.5.

Theorem 1.6. Let n > 2 and let ¢ and ) be any two vectors in Z". There exist
A € GLY, which admit a right L? factorization with the partial indices o and left L?

nxn

factorization with the partial indices X.

The remaining sections of this paper are devoted to the proof of Theorem 1.6. The main
steps are as follows.

Every natural number n > 2 can be written in the form n = 2k + 3/ with nonnegative
integers k and [. It therefore suffices to prove Theorem 1.6 for n = 2 and n = 3.

The remark after Theorem 1.5 yields an F' € L%, which has a right L? factorization
F' = F_F, with zero partial indices and a left L? factorization F' = G4 NG_ with prescribed
total index. In Section 2 we show that one can always assume that the entries of G are
rationally independent; this assumption is needed in the further course of the proof. In
other words, the aim of Section 2 is to prove that the factor G of the L? factorization
I' = G4 NG_ can be perturbed to become “sufficiently bad”. Section 3 contains a few more
auxiliary results. In Section 4 we multiply F' from the right by a rational matrix function
(1 so that F'Q; has a right L? factorization with prescribed partial indices (o1,.-.,0n) and

a left L? factorization with partial indices (p1,...,1,) whose sum is the prescribed total
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index, i.e.,
i = A A

Finally, in Section 5 (n = 2) and Section 6 (n = 3) we construct a rational matrix func-
tion @, such that Q;FQ, admits a right L? factorization with the same partial indices
(01,---,0n) and possesses a left L? factorization with partial indices (p3, ..., 1) where
p; = pj + 1 for a given j, pi = pp — 1 for a given k(# j), and y} = g for the remaining
I(¢ {j,k}). The desired A can therefore be obtained in the form

A=QM ... QPN FQ,.

2. Generating rational independence. Let b,,...,b, € H2. Functions of the form
Ryby + -+ + Ryby, with R; € R are called rational linear combinations of by, ..., b,,. The
functions by,..., b, are said to be rationally independent if

R1b1+...+Rmbm:0 with R],...,RmER

is only possible for Ry = ... = R,, = 0.

The purpose of this section is to show that a matrix function G, € G’[Hi]nx" can be
multiplied from the left by matrix functions of a special structure so that the entries of
the resulting matrix function are rationally independent. We present two versions of this
result (Lemma 2.2 and Lemma 2.3), with two different proofs, although solely Lemma 2.2
or solely Lemma 2.3 would be completely sufficient for what follows.

Lemma 2.1. Let by,...,bn,c1,...,ck be functions in H? and suppose the functions
¢1, ... cx are rationally independent. Then there exists a function h € H® with the following
property: if

Riby + - + Rnbp = h(Qrci + -+ - + Qrcy)
with Rl,...,Rm,Q],...,Qk € R, then Ql - ... :Qk =0.

Proof. Assume the contrary, that is, assume for every h € HY \ {0} we can find
R;,Q; € R such that 3 R;b; = h(XQic) and 3. Qic; # 0 (note that, by the rational
independence of the ¢;, 3~ Qic; = 0 if and only if @; = 0 for all [). The equality

> Qut)a(t) #0 (1)

holds for all ¢ € T in some set of positive measure. On multiplying this equality by an
appropriate polynomial we can achieve that ); € R* for all [. The F. and M. Riesz theorem
then implies that (1) is true for almost all ¢t € T. Hence,

h = (E R]‘bj) / (Z Qw,) a.e. on T. (2)

Clearly, the set of all functions in H{® which are quotients of rational linear combinations
of a finite number of given functions in H2 is a separable subset of H$°. On the other hand,
HP? is well known to be not separable, because, for example, for different positive real A
and p the H{® norm of the function

t+1 t+1
exp (3 7) — o ()
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equals 2. This shows that there are functions h € H \ {0} which cannot be represented
in the form (2). m

Lemma 2.2. Letn =2 orn =3 and let G4 € G[H2],xn. Then for every e > 0 there

exist finitely many matriz functions Kt,... Kt € [H{®)nxn and finitely many constant and
invertible matrices C1, . ..,Crm € C™" (with m independent of €) such.that || K || < € for
J=1,...,m and the n* entries of

Coll+ KL)...Co(I + K)Cy(I + K)Gy

are rationally independent.

Proof. Let first n = 2 and write

b

Suppose a, b are rationally independent. For arbitrary h € H® we have

10 a b\ a b
h 1 c d] \Nc+ha d+hb)"’

Assume there are Ty,..., Ty € R such that

0 = Tla + sz + T3(C + h(l) + T4(d + hb)
= Tla + sz + Tgc + T4d + h(T3a + T4b) (3)

By Lemma 2.1, there is an h € H{® such that (3) is only possible with T3 = Ty = 0. On
replacing h by dh with a sufficiently small § > 0, we can guarantee that ||h||. is as small
as desired. If T3 = Ty = 0 in (3), then 0 = Tya + T3b, which, by the rational independence
of a and b, implies that T} = T3 = 0. Thus, in case a,b are rationally independent, we have
proved the assertion.

The proof is analogous if c,d are rationally independent. So suppose both the pair a,b
and the pair c, d are rationally dependent. After multiplication from the left by appropriate
constant invertible matrices we can assume that

=t ) = =k &) g
where J, R € R.

Let us consider the first case of (4). Since G4 € G[H32]5x3, it follows that

det Gy = ac(R— Q) # 0 a.e. on T. (5)

1 h a Qa\ (a+hc Qa+hRc
(O 1.>(c Rc)_( c Rc ) (6)

We have
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We claim that there is an h € H{® of sufficiently small norm such that the entries of the

first row of (6) are rationally independent, which reduces the problem to the case disposed
of above. So let Ty, T, € R and

0= Tl(a + hC) + Tz(Qa + hRC) = (Tl + TQQ)G + h(Tl + TQR)C. (7)

Since c is rationally independent by (5), we deduce from Lemma 2.1 that thereis an s € HY
with prescribed norm such that (7) is only possible with T} + TR = 0. It follows, again by
(5), that Ty + T,Q = 0. Hence T3(R — Q) = 0, and once more invoking (5) we get T, = 0
and thus Ty = —T, R = 0. This proves that a+ hc and Qa + hRc are rationally independent.

If G, is the second matrix of (4) we can proceed analogously to produce an h € HS® of
arbitrarily small norm such that the first row of

1 h a Qa\ (a+hRc Qa+he
01 Re ¢ | Rc c
is rationally independent. This completes the proof for n = 2.

ay a das
Gyo=| b, b b |.
C; C2 C3

Suppose first that there are two rows of G4 whose 6 entries are rationally independent. For
the sake of definiteness, let ay, az, a3, by, by, b3 be rationally independent. We have

1 00 a, az as
010 |Gy= by by bs -
h 01 ¢+ hal c + haz c3 + ha3

Let T;x € R and assume

Let now n = 3 and let

0 = Tiay + Tizaz + Tizaz + To1by + Tagbs + Tosbs
+131(c1 + hay) + Tsa(c2 + hag) + Ts3(cs + has)
= Tnay + Tzas + Tizaz + 1215y + Tazby + Toabs
+Ts1¢1 + Tsz¢y + Taacs 4+ h(Ts1ay + Tsza; + Tasas).

By Lemma 2.1, there is an h € H$® of sufficiently small norm such that the last equality is
only possible for T3, = T3y = T33 = 0. It results that

0 = Thiay + Ti2a2 + Tizaz + To1by + To2by + To3bs,

which, by the rational independence of ay, a3, as, by, by, b3, implies that Tj, = 0 for all j, k.

Now suppose that the entries of at least one row of G, are rationally independent, say
a1, a;,a3. Consider

.1 00 a) a az
h 1 0 G+ = bl + ha1 b2 + ha2 b3 + ha3 .
0 01

(8] Cy C3
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We claim that there is an h € HS° of arbitrarily small norm such that the first two rows of
this matrix are rationally independent. Indeed, let Tj, € R and

0 = Thay+ Tiaaz + Tizaz + Toi(by + hay) + Toa(by + has) + T3(bs + has)
= Tnay + Tizaz + Tizas + Taby + Tagbg + Tosbs + h(Ta1ay + Taap + T3as).

By Lemma 2.1, there is an h such that this is only possible with Ty, = Ty, = Th3 = 0. As
a,,as, as are rationally independent, it follows that Ty; = T3 = T13 = 0.

We are left with the case where the 3 entries of each row of G, are rationally dependent.
In analogy to (4), there are many subcases of this case. All these subcases can be treated
similarly, and we here restrict ourselves to the subcase in which

a b Rla + sz
Gy=|c d QictQad (8)
€ f S]C + Szf

with R;,Q;,S5; € R.

Suppose a, b, c,d, e, f are rationally independent. Any rational linear combination of the

first row of
1 A O
01 0 |G,
0 01

T](a + hC) + Tz(b + hd) + T3(R1a + sz + thC + thd)
= (Th + TsRi)a + (Ty + T3 Ra)b + h((Th + Ts@h)c + (T2 + T5Q;)d).

is of the form

By Lemma 2.1, there is an h € H{® of preséribed norm such that this can be zero only if
'+ T3Q: =0, T+ 13Q,=0, (9)

which implies that

0= T3(R1 — Ql)a + T3(R2 — Qg)b (10)

If T3 = 0, then, by (9), T} = T, = 0. If T5 # 0, we infer from (10) that R, = @, and
Ry = @),. This is impossible unless the matrix G is of the form

a b Rla + Rgb
G+ = c d R16+ de .
€ f Sle+ SQf

Repeating the above argument we can produce a matrix with a rationally independent row
(which reduces everything to a case considered earlier) except in the case where G is of

the form
a b R1a+ R2b
B+ = Cc d Rlc—i- Rgd . (11)
€ f R16+ sz
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As the determinant of (11) vanishes identically, matrices of the form (11) do not belong
to G[H{’|sxs. Thus, the case where G, is given by (8) and a,b,c,d, e, f are rationally
independent is settled. '

Now suppose G is of the form (8) and the four entries of two rows of

a b
( c d ) (12)
e f

are rationally independent, say a, b, c,d. We have
1 00 a b a b
0 10 c d | = c d :
h 0 1 e f e+ ha f+hb

0 = Tia+Tob+ Tsc+ Tad + Ts(e + ha) + Te(f + hb)
= Tla + sz + Tac + T4d + Tse + Tef + h(Tsa + Tab)

Let T; € R and

Due to Lemma 2.1, there exists an h € H{° of sufficiently small norm such that this is only
possible for Ts = Tg = 0. It results that

0= Tla + T2b + T3C + T4d,

whence Ty = Ty = T3 = Ty = 0. Thus, we can generate a matrix of the form (8) in which
the 6 entries of the first two columns are rationally independent.

Now suppose G is given by (8) and the two entries of at least one row of (12) are
rationally independent, say a and b. On multiplying (12) from the left by

1 00
h 10
0 01

with an appropriate h, we can reduce this case to the case considered in the previous
paragraph. )

Finally, suppose G is of the form (8) and the entries of each row of the matrix (12) are
rationally dependent. Let, for example,

a Xia Xsa
Gy=] c Yiec Yic (13)
e Zie Zje

with X;,Y;, Z; € R. Assume a,c, e are rationally independent. The first row of

111
010]|G,
00 1
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is (a + ¢+ e, Xya + Yic+ Zie, Xza + Yac + Zz¢). Suppose a rational linear combination of
the entries of this row is zero,

0=(T'+TNTX + T: Xz2)a+ (T2 + oYy + T3Ya)e + (Th + 1o 2y + TsZ)e.

1 X, Xo T, 0
1 ‘/1 Yg T2 = 0 3
1 2, Z, T3 0

which is impossible, because the determinant of (13) does not vanish identically.

Then

If a, ¢ are rationally independent, we can multiply (13) from the left by

100
010 (14)
0

with an appropriate h € H of sufficiently small norm and use Lemma 2.1 to get a matrix
function in which the elements of the first column are rationally independent.

It remains to consider the case where the matrix (13) is of the form

a Ua U,a
Gy = | Usa Usa Usa
Uea U7a Uga

with U; € R. Multiply this matrix from the left by (14). The 1,1 and 3,1 entry of the
resulting matrix are a and Usa + ha. Let Ty,T, € R and

0= Tla + Tg(Usa + ha) = (Tl + Tte)a + tha.

By Lemma 2.1, there is an h € H{® of sufficiently small norm such that this is only possible
for T, = 0, which implies that Tj = 0, too. Thus, we have reduced the problem to the case
where the first column contains two rationally independent entries. m

Let D, := {z€ C:|z| <1} and D_ := {z € C: |z| > 1} U {oo}. As usual, we identify
functions in H% with their analytic extensions into Dy.

Here is another version of the desired result.

Lemma 2.3. Let I' C T be an arc and let U € C be an open set containing I'. Let
further G4 € G[H}]nxn and suppose Gy 1s analytic in U. Then for every € > 0 there exist
K* € [HP)uxn and C € GC™" such that | K* |l < € and the n? entries of (I + K¥)CG4

are rationally independent.

Proof. Let r},... ,r} be the rows of G. Since
i (0)
det : = det G4(0) £ 0,
ra(0)
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there are ay, ..., a, € Csuch that aqrf (0)+.. .40, (0) = (1,1,...,1). At least one of the
numbers aj,...,a, must be nonzero, say a;. On replacing the row r;-L by arrf + ... anrf
(which is equivalent to multiplying G from the left by some matrix in GC"*"), we obtain
a matrix function whose jth row takes the value (1,1,...,1) at the origin. Clearly, by
addition of a sufficiently large constant multiple of the jth row to the remaining rows
(which again amounts to multiplication of G from the left by a matrix in GC™ ™), we can
achieve that each entry of the resulting matrix is nonzero at the origin. Thus, without loss
of generality let us assume that no entry of G, vanishes identically.

A countable subset M = {z,} of D, \ {0} is called a Blaschke sequence if
Y (1= z]) < oo

[t is well known that if M = {2,} is a Blaschke sequence, then the so-called Blaschke
product
|zs| 25 — 2

BM(Z) ::H =) Z€D+a

S 2 1 —Z52

is a well-defined function in H® whose set of zeros in D is exactly M.

Let G4 = (bjx)%-, and denote by N, the points z € Dy at which at least one of the
functions b;-rk vanishes,

Noo :={z € Dy : [[ b%(2) = 0}.
ik

The set N, is at most countable. Choose countable and pairwise disjoint subsets Ay and
Nik (J,k € {1,...,n}) of D, \ (N U {0}) with the following properties:

Np and all Nk are Blaschke sequences;

Ny and all ./\fjk have a cluster point on I
Let Mo = {2{”}. Define new Blaschke sequences M;; = {zl#¥} (j,k € {1,...,n}) with a
cluster point on I' by

Mic:=MU | M
(1.D)#(5.k)

and consider the Blaschke products

hy = B,
Finally, pick n > 0 and put
l+nhly, nhf, ... pht,
[+ K* = (5 +nht)hey = nhfy  1+nhf; ... nhi,
tht wh, . 14k,

Obviously, if n > 0 is sufficiently small, then ||K*||, < €. We claim that the entries of
(I + K*)G, are rationally independent.

To see this, let (I + K¥)Gy = (a;'k);‘,k:l and suppose there are T}, € R such that

0= Z Tjkafk = Z T]‘k Z((Sj( + nhj-l)b;‘,—k- (15)
1k

nk l
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On multiplying ( 5) by an appropriate polynomial, we can actually assume that T;, € R*.
Letting z = 2(9 in (15) we get

0 = ZTJk Z(6ﬂ+nh,,( )b (2{)
= TIZTJ’C Zéﬂb,k

(recall that all h+, vanish on Np). This equality holds for infinitely many z{% in D, which
have a cluster point in Dy U U. Since the functions Tir and b} and are analytic in a
neigborhood of the cluster point, it follows that '

0=2> T &b (16)
ik 1
throughout D,. Subtracting (16) from (15) we arrive at the equality

0= 3 Tyh}bh. (17)

ikl
By construction, A%j(z{#0)) = 0 for (j,1) # (Jo,lo) and ht (zliorf0)) £ 0. Hence 17) yields
JI\“s Jolo \©s

0= ZT (]o lo) b+ ( ijoylo)).

As the sequence {z{%°%)} has a cluster point on ' and Tjok, bt are analytic in a neighbor-
hood of T, it results that
0= Z Tokbl k= Zbitijok'

These are n? equalities, which can be written in the form

bt ... b\ [ Tu ... Ty 0 ... 0
bho..obt )\ T ... T 0 ... 0

b} b}
mo - In
det| ... ... ... | =detGy #0 in Dy,
bt bt
nl - nn

we see that T = 0 for all j, k, which proves our claim. m

As

3. More auxiliary results. The results of this section are more or less well known
and are only stated for the reader’s convenience.

Lemma 3.1. If f € H} vanishes at a point zy € Dy, then the function
f(2) — f(=0)

22— 29

D; — C, zm
also belongs to H} . m
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Lemma 3.2. Let Fy € [H2],xn and suppose det F, has a zero of order m > 1 at
z0 € Dy. Then Fy = G, U where Gy € [H?|,xn, det G4 has the same zeros with the same
orders as det F in Dy \ {20}, det G4 has a zero of order m — 1 at 29, and

( 1 (03] \
I oy
U(z) = z— 2z , (18)
1
\ 1)
ay,...,ak_y being certain numbers in the kth column of U.

Proof. This follows from the proof of [6, p.68] and Lemma 3.1. m
Lemma 3.3. Let Gy = RFy where

Gi € [Hilaxny, R € GRuxn, Fi € GIH?]nxn.
If det Gi(2) # 0 for all z € Dy, then Gy € G[H2]nxn.

Proof. We only show the “+ version. By assumption, the entries of G}! are analytic in
D,. On the other hand, each entry h of G} is a rational linear combmatlon of the entries
of F;! and thus of functlon in H2. On decomposmg the rational coefficients into partial
fractlons we get

h(z) =) (—giijj(z) for zeD,

j z — 2;)

where a; € C, z; € D_, f; € H2. But if z; € D_, then the function

=56

Zj k=0

belongs to R*. m

Lemma 3.4. Let A € L, have a right L? factorization A = A_MA, and let Q,,Q,
be in GRuxn. If Q1AQ; admilts a factorization

Q:1AQ, =C_NCy (19)

where Cy € G[H}|nxn and N(t) = diag(t™,...,t") with &,,...,k, € Z, then (19) is
automatically a right L* factorization of Q,AQ,.

Proof. Theorem 1.2 implies that T'(A) is Fredholm. The operator

T(Q:1AQ>) — T(Q)T(A)T(Q2)

can be shown to be compact, and as T(Q,) and T(Q,) are also Fredholm, it follows that
T(Q1AQ:) is Fredholm. Hence, again by Theorem 1.2, Q,AQ, possesses a right L? factor-

ization

QIAQ, = A_M'A',.
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The assertion now follows from the “uniqueness” of L? factorization [6, Theorem 3.8]. =

Obviously, the analogue of Lemma 3.4 for left L? factorization is also true.

In other words, if we multiply L? factorable matrix functions by matrix functions in
GRuxn and if we are given a factorization of the resulting matrix function which is subject
to (i), (ii) (resp. (i’), (ii’)), then condition (iii) (resp. (iii’)) is automatically satisfied.

Lemma 3.5. Let B € LS, and let B = B, NB_ be a left L* factorization. Suppose
the n? entries of By are rationally independent. If R_ € R, and det R_ has no zeros on

T, then BR_ has a left L* factorization BR_ = B\ N'B. such that the n? entries of B!

are also rationally independent.

Proof. The matrix function F := R* B* belongs to [H2],x, and its determinant has at
most finitely many zeros of finite orders in D,. Repeated application of Lemma 3.2 gives
a representation F' = G4 U, where Gy € [H}]nxn, det Gy has no zeros in D, and Uy is
a matrix function in R}, whose determinant has no zeros on T. Lemma 3.3 shows that

G4 € G[H}].xn. By Theorem 1.3(a), the matrix function NU} € GRnxn admits a left R
factorization NU; = V4 N'V_. Thus,

BR. = ByNB_R_=B,NF"= B,NU;G}
= (B+V+)N,(V_G:_) =: B_,’_N,B’_
It is clear that B4 V) € G[H2],xn and V_G* € G[H?)nxn. Lemma 3.4 shows that BR_ =

Bg_ N'B" is aleft L? factorization. Since V, is a rational matrix function whose determinant
has no zeros on T, it is easily seen that the entries of BV, are rationally independent
whenever so are the entires of B;. m

Lemma 3.6. Let B be a matriz function in L, and let I' C T be some arc. Suppose

B is analytic in some open set U C C which contains I'. If B = B_MB, is a right L*
factorization, then B_ and By are also analytic in U.

Proof. We have B, = M~'B-!'B almost everywhere on T. Define

(2 = { By (2) for ze (D,UT)NU,
MY (2)B-'(2)B(z) for ze (D_UT)NU.

The assertion will follow once we have shown that ¥ is analytic in U.

To show that W is analytic in U, we employ Morera’s theorem. Thus let v be a closed
smooth simple curve in U. If y C Dy or v C D_, then [ ¥(z)dz = 0 because ¥ is analytic
in D, NU and D_NU. If ¥ intersects T, we can write vy = v, Uy_ where

e = (YND4) UG, 4= = (yND_)U(-4),

§ is the union of positively oriented subarcs of T, and —¢ is § with the opposite orientation.
Clearly,

L U(z)de = / B, (2)dz. (20)

v+
The matrix function By € [H2],xn C [H}]axn can be approximated by analytic polynomials
P} in the H} norm as closely as desired, and because

/ P(z)dz =0,
v+
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it follows that (20) also equals zero. Analogously,

/ U(z)dz = L M72)BZ(2)B(2)dz, (21)

and BZ! € [H?]nxn C [H!]nxn can be approximated in [H!].x» by matrix functions of the
form

Po(z2)=po+pz™' +. ... 4 pnz ™
as closely as wanted. As M~'P, B is analytic in U \ {0}, we get
M~ (2)P; (z)B(z)dz = 0,

m
o

which implies that (21) is also zero.

In summary, [ ¥(z)dz = 0 for every closed smooth simple curve ¥ C U. Hence, by
Morera’s theorem, ¥ is analyticin U. m

Of course, the analogue of Lemma 3.6 for left L? factorization is also true.

4. Prescribed right partial indices and left total index. In what follows we
always suppose that n = 2 or n = 3.

Let A = (A1,..., ) and ¢ = (g1,...,0,) be two given vectors in Z" and suppose
01 2 02 2 ... > pn. By the remark after Theorem 1.5, there exists an F' € L, _ which

nxn
has a right L? factorization F' = F_F, with zero partial indices and a left L? factorization

F = G4 NG_ such that the left partial indices v,...v, satisfy

V=D A= 05 (22)

If C € GC**", then CF = (CF_)F, is a right L? factorization of C'F with zero partial
indices and CF = (CG4)NG_ is a left L? factorization of CF with the left partial indices
V1,V2, .- ,Vn. Now let Ky € [H{]nxn and suppose ||Ky||o is sufficiently small. Then

IT((1 + K¢)F) = T(F)]|

is sufficiently small, and hence, by Theorem 1.2, (I + K )F admits a right L? factorization
(I+ Ky )F=F' Fi with zero partial indices. On the other hand,

(I+K)F = ((I + K,)G4)NG-

is a left L? factorization with the partial indices vy, . . ., vy. Taking into account Lemma 2.2,
we can therefore a priori assume that we have two L? factorizations

F = F_F+ = G+NG._ (23)

such that (22) holds and such that the entries of G are rationally independent.

The same conclusion can also be drawn with the help of Lemmas 2.3 and 3.6. Indeed,
the matrix function F' we are starting with results from the construction of [1]. This
construction makes use of a function u on R such that

0<u<l, wu(-o00)=0, u(+o0)=1.
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Specifying this function u to

(@)= = (5 +arctanz)
u(z) := ~ {5 +arctanz ),

which extends to an analytic function in C\ {—1,1}, and taking into account Lemma 3.6, we
get from [1] a matrix function F' which is analytic in C minus a finite number of points, say
z1, -+, Zm. Once more employing Lemma 3.6, we see that F_, Fy, G_, G, are also analytic
in C\ {z1,...,2,}. We can therefore have recourse to Lemma 2.3 in order to deduce that
we are given two L? factorizations (23) such that (22) is satisfied and such that all entries
of GG, are rationally independent.

Consider the matrix function

1
th_Q2
Fy(2). (24)
ter—en
The determinant of this matrix function has a zero of order ng; — Y p; at ¢ = 0 and no
other zeros. Lemma 3.2 therefore implies that (24) can be written in the form

C(U(1) (25)

where Cy € [H}],xn, det C} has no zeros in D, and U € R}, has no zeros on T. Lemma

3.3 shows that Cy € G[H}]axn. As U is the product of matrix functions of the form (18)
with zo = 0, we see that R_ := U~! belongs to R, .. Since (24) and (25) coincide, we have

1
roR@=| " Cul0) (26)
ten—a1
and hence (23) gives
F(t)R_(t)t® I, = F_(t)t* I, F.(t)R_(t)
ta
= F_(1) e, (27)

ten

where [, is the n x n identity matrix. By Lemma 3.4, the factorization (27) is a right
L? factorization with the partial indices . From Lemma 3.5 and (23) we get a left L2
factorization

F($)t I, R_(t) = G4 ()N ()t I,R_(t) = D, ({)M(t)D_(1) (28)

with left partial indices py, . .., u, and with the property that the entries of D, are rationally
independent.
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The operator . L
T(FR—t9L) - T(F)T(R)T(t™*1,)
is compact because R_ and ¢~ [, are continuous on T. Consequently,
IndT(FR_t=I,) = Ind T(F) + Ind T(R_) + Ind Tt~ I,,).
From (23), (22), and Theorem 1.2 we infer that

IndT(F) =Y ;=Y A - Y o (29)

The matrix function U is continuous and the product of ng, — >_ 0; matrices of the from
(18) with 2o = 0. This and Theorem 1.3(b) imply that

IndT(R-) = ~IndT(R_) = Ind T(U) = ~wind det U = —(ng; — 3 ¢;).  (30)
Finally,
IndT(t"®1,) = ng,. (31)
Adding (29), (30), (31) we get
IdT(FR-t2L) =Y ),
and comparing this with (28), we obtain from Theorem 1.2 that

Bt =30 (32)

Now put C(t) := F(t)R_(t)t I, and denote F_ by C_. From (27) we see that C has a
right L? factorization

ta

coy=c-o| | (33
tén

with the prescribed partial indices py,. .., 0., and (28), (32) tell us that C has a left L2

factorization
o

tH2

C(t) = D4 (t) D_(1) (34)
thn

such that the total left index gy + --- + p, is the prescribed total left index Ay + ... + A,
and such that the entries of D, are rationally independent.

5. Two by two matrix functions. In this section we prove Theorem 1.6 in the case
n=2.

Lemma 5.1. Let n = 2 and let C be given by (33) and (34). There exists a matriz
function Q € GRaxz such that QC has a right L? factorization

ter 0

Qew=4-0)( 5" . ) 440 (3)

31



and a left L? factorization

awew=a,0( " b0 ) B (3)

Proof. Let C_ = (cj;)3 =) and Dy = (d})ii=,. There is a matrix E € GC?*? and a
point zp € D such that the entries of

F_:=FEC_= (f]'_;c)?,k=l7 Gy :=ED, = (gfk)?,kﬂ

satisfy
fl_z(oo) #0, fyfo0) =0, (37)
ghizo) #0, gh(s0) £0. (38)
Indeed, at least one of the numbers cj;(00) and ¢3,(00) is nonzero. If ¢j;(00) # 0, we can
substract a constant multiple of the first row from the second row to make the 2,2 entry
zero. If ¢j;(00) = 0, we simply interchange the first and second rows. This proves (37).

Since det £ # 0, the entries of G4 are rationally independent together with those of D,.
Therefore none of them can vanish identically. This gives (38).

Let € > 0 and put 2z, := zo— 1/e. If € > 0 is sufficiently small, then the matrix function

B (1) = ( (1) 1+e(3— 20) ) B ( (1’ et(1 _OZJ-I) )

belongs to GRY,,. We have

0 =x0(; )

where

( t= fa(t) () )
X_(t):= :
(" +e(l = 20t™)) f5:(t) (L +e(t — 20)) f5a(t)

As f3(00) = 0 by (37), we see that X_ € [H?|2x2. The only zero of

det X_(2) = det F_(2)e(l — z.27")

in D_ is a simple zero at z = 2,. We can write

woeo = o (TR 0 (0 (00)
_ (t—z€ ) (39)

—1 = -
AN filt)

efu(t) +yetfn(t) (1+e(t - 20))f5(H)

where
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Put
_ 1 falz)

Ze fl_Z(ZE),

note that, by virtue of (37), f3(2.) # 0 whenever € > 0 is sufficiently small. This choice of
v makes the 1,1 entry of Y_ analytic in D_. Thus, by Lemma 3.1, Y_ € [H%)2x2. As

det Y_(z) = det X_(2)(1 — z.27") ™" = edet F_(2),
we see from Lemma 3.3 that actually Y_ € G[H?],42. By (39),

raor-o) (Y o )=o) ) 20

=Y_(t>(tf,' t‘l)(_jt;ﬁ‘_m ‘1’)=: K(t)(t[;' t?,)fu(t). (40)

t— 2z, 0
_7t91+1—92 1

is a matrix function in GR{y,. This shows that A} € G[H?],y,.
Now put

Clearly,

L ( 1 =g/ )

(recall (38)). We have
ghi(t) 91a(t) )
1(8) (14 e(t - ) g1

1
(1) = BL2L (1 4 et - 20))g(t)

971(z0

(1+e(t — 20))g5(2) (1 +e(t — 20))92(t)

Obviously,
bt () = 0. (41)
By (38) there is a sufficiently small ¢ > 0 such that

+ (20
(k) (20) = (g5 (z0) — g—gfgz—oi(g;*l)'(zo) ~ e(gh)(20)

is nonzero, where the prime stands for the derivative. Put

_ _hhi(z0) _ 1 0
T ) ) S‘(t)"(n(t—~zo>—' 1)' (42)
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Then

hii (1) hix(t)
S_(OIRL(1GL(1) = , ;
R (1) + il hh(t) + phiald
= By(t) ( t—020 (t—(.)zo)_l ) (43)
where R (£)( — 20)! Ry (8)(t = 20)

B+(t) = " )
(A0 + n82) (£ = ) (¢ — 20)hdy(t) + by (1)
By (41) and (42), By € [H2]3x2. Since
det By(z) = det Ry (z)det G4(2) £ 0 for z € Dy,

it follows from Lemma 3.3 that B;l € [H;{]gxg.
Finally, let @ := S_JR, E. From (40) we get

QUC(D) = S-(1)IY-() ( PR ) A(t).

This in conjunction with Lemma 3.4 gives (35) with A_(t) := S_(¢)JY_(t). On the other
hand, due to (34) and (43),

Qwet = B (17 (t_‘lo)_,)(t;' oo ) D=0

= Bi(t) ( tMOH t“?“‘ ) ( l—gorl (1 —zgt"‘)“ )D‘(t)'

Taking into account Lemma 3.4, we get (36) with

1 —Z()t_l 0

T L I PR

Analogously one can show that Lemma 5.1 is also true with (g, + 1,1, — 1) replaced by
(1—1, p2+1). Repeated application of Lemma 5.1 therefore produces 2 x2 matrix functions
whose right partial indices remain constantly (g;, 02), while their left partial indices become

(1 +6+ -+ Omypta =8y — -+ — )

where §; € {—1,4+1} can be arbitrarily prescribed. Clearly in this way we can obtain any
pair (A1, Ay) such that A\; + Ay = py + po.

Finally, to get rid of the constraint g; > g, let

-(13)
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and replace A by PAP. Then

PAP = (PA_P) (P( o ) P) (PA,P) = (PA_P) ( e )(PA+P)

and, analogously,

the
PAP=(PB:P)| "o ., )(PB_P).

6. Three by three matrix functions. This section is devoted to the proof of Theorem
1.6 for n = 3.

Lemma 6.1. Let n = 3 and let C be the matriz function (33), (34). Then there exists
a matriz function Q € GRay3z such that QC has a right L? factorization

1o
Q(t)C(t)=A—(t)( (e )A+(t> (44)
tQS

and a left L? factorization
tm
Q)C(t) = By (1) ( pr ) B_(1) (45)
tus—

Proof. Let C = (cj;)3 4= Since det C_(oo) # 0, at least one of the three 2 x 2 minors
formed by the second and third columns of C_(oc0) must be nonzero. On appropriately
interchanging the rows of C_(o0), we can assume that

() 50 4

€32(00)  €33(00)

Then, by adding appropriate constant multiples of the first and second rows to the third
row of C_{00), we can achieve that the 3,2 and 3,3 entries of C_(c0) become zero. The 3,1
entry is then necessarily nonzero. Equivalently, there is a matrix E € GC3*3 such that the
entries of

F_:=EC_ = (f3)3=

fia(00)  fiz(o0)
o 25 ) ) #o 0)
f31(0) # 0, f3;(00) = fz5(00) = 0. (47)
Fix a point 29 € Dy. For € > 0, put z. := 29 — 1/e. From (46) we infer that if ¢ > 0 is

sufficiently small, then
fra(ze)  fia(ze)
det(fz_z(zs) f;a(ze))ﬂ'

satisfy
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Consequently, we can find 71,72 € C such that
22 ' fia(ze) + m fra(ze) + v fiz(z) = 0, (48)

z;lf{l(ze) + 1 f2(2) + 12f5(2e) = 0. (49)
Put
re(t) ;=14 e(t — z0) = et(l — zt™")
and define Ry € GR},; by
Ri(t) = diag (1,1, (1))

Hhen Ry (t)F-(t) = XW(t) XD (1) XO)(2) diag (¢,1,1)
where
t1 () fia(t) fia(t)
xW() = 7 () =) fm) |,
e(l — 2t ™) f51(t) re(t)faa(t) re(t)f35(t)

(1 — 2zt~1)!

00
XA = | ml—zt")t 1 0|,
Y2l — zt™')"t 0 1

1—2zt! 00
XO) = -7 10|,
—Y2 01

Conditions (48) and (49) guarantee that the 1,1 and 2,1 entries of the product X)X
belong to H? (recall Lemma 3.1). The entries of the third row of XV X®) are in H2 by

virtue of the two equalities in (47). The remaining entries of X)) X(?) are obviously in H2.
Thus,

Y. = XWx® ¢ [H?)3x3

and we have
t—=z 00
Ry()F-(t) = Y_()XO(t) diag (¢,1,1) = Y_ (&) | —mt 1 0 |.

Taking the determinant of this equality we see that detY_(z) # 0 for z € D_. Hence,
Y. € G[H?]3x3 by Lemma 3.3. It follows that

Ry (t)F_(t) diag (¢7',1%,1%)C4 (1)

te t— 2z 00
=Y_(t) te2 —yteti=e 1 0 | C(t)
13 —yptertt=es g 1 |’
=: Y_(t) diag (%, 1%, 1%) A, (t), (50)
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and using Lemma 3.3 one can readily verify that Ay € G[H2]sxs.
Now let
Gy = EDy = (g5) s

and consider

Ry ()G4(t) = gh(t) gh(t) 9%(t)

re(t)gh(t) Te(t)gih(t) re(t)gd(t)
The entries of this matrix function are rationally independent together with those of D, .

Consequently, no entry can vanish identically, which enables us to pick a point z, € D, so
that

gi(20) #0, g32(20) #0, gh(20) #0. (51)
Moreover, we can choose zy so that
(932)' (20)912(20) — 933(20)(91)'(20) # 0, (52)

the prime standing for the derivative. Indeed, (51) implies that
gi2(2) 20, gh(2) #0, gi(2) #0
for all z in some open neighborhood U of zo. If
(932)'(2)912(2) — g5a(2)(91)'(2) = 0
for all z € U, it would follow that
(922/91)'(2) = 0

and thus g3,(z) = 8g{3(2) for all z € U with some § € C\ {0}. This contradicts the rational
independence of the entries of G .

One of the three 2 x 2 minors in the first two columns of Ry (z0)G(20) must be nonzero.
For the sake of definiteness, suppose

det ( ghi(z0) () ) #0 (53)

931(20)  932(20)

(note that r.(z9) = 1); the other two cases can be treated analogously. Let
1 00
J=|lal g with o, € C.
0 01

Clearly, J, € GC3**3. We have

( g (t) 912(t) 913(t) )
J1R+(t)G+(t) = h2+1(t) h};(t) h;:s(t)
re(t)gn(t) re(t)gh(t) re(t)gd(t)
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where

hfi(t) = agfi(t) + Bre(t)gh(t) + g5 (1),
h3,(t) agiy(t) + Bre(t)gn(t) + gh(t),
hia(t) = agly(t) + Bre()gh(t) + g3:(t).

By (53), we can choose o and f so that

h31(20) = hi,(20) = 0.
Notice that a and 8 do not depend on £ > 0.
Further, define J, € GC3*3 by

1 00 +
Z
J2::(O 1 0), 7:=—fgz°;
vy 01 12120

2 iRy ()G () = (uh(t))3 s

o

)

(recall (51)). Then

where
ufi(t) = gh(t), ufi(t) = h%i(2),
ufi(t) = Ygh(t) 4+ re(t)g5i(t),
and (56) shows that
u's*z(zo): .
Finally, let
1 —p(t—2z)t 0
S (t)y:=]0 - 1 0}, necC.
0 0 1
We obtain
u+ u+
ufy(t) ~ n—}_‘%) ufy(t) — 77‘}2_2.;(:“) ufz(t) — 0
S_(£)J21 R (HG4 () = ug () ud(t)
";rl(t) Uz{z(t)

Suppose for a moment that we have an 7 such that

+
. Up(2)
ufy(z0) =7 lim =2

=0

(54)

(85)

(56)

(59)

(60)

(note that uf,(20) = hdy(z0) = 0 due to (55)). From (55), (57), (58), (60) we see that the

value of the matrix function (59) at zo is of the form

(32)

* O *
oo o

* ¥ ¥



Since the 2,1 entry vanishes at 2, we conclude from Lemma 3.1 that the 1,1 entry of (59)
belongs to H. Analogously we see that the 1,2 entry of (59) is in H2. The other four
entries of the first two columns of (59) are obviously H? functions. Thus, we can write the
matrix function (59) as

where B, € [H2]343. Since
det By (z) = det S_(z)det J,det J; det Ry (2) det G4(z) = det G4 (z) £ 0

for all z € Dy, we deduce from Lemma 3.3 that actually By € G[H?]3x3. In summary, we
have

S_(t)J2J, Ry (1) EC(t)

= S_(t)JoJy Ry (8) G (t) diag (t*, t#2, %) D_(t)

= By (t)diag (1,t — 20, (t — 20) ") diag (t**, t*2,¢**) D_(t)

= B (t) diag (t*, 142+ 1+ ) diag (1,1 — 2t ™", (1 — 2t ™!) ") D_(¢)

=: By(t)diag (t*,t*21! " B_(t) (61)

with B_ € G[H?]axs.
Letting Q(t) = S_(t)J2Ji R1(t)E, we get (45) from (61). By (50),

th
QE)C(t) = 5—(t)J2JxR+(t)F—(t)( te ))C+(t)
, tes

o
= S_(t)JgJIY_(t)( ez )C+(t),
tes)

and this is (44) with A_ = S_J,J;Y_ and A; = C} (also recall Lemma 3.4).
We are left with (60), that is, with finding an 7 such that

ufz(20) — n(u3,)'(20) = 0. (62)

By formula (54),
(uzz)'(20) = (h3)(20) = lgf3)'(2) + Bri(2)gh(2) + Bre(2)(95) (2) + (95,)'(2)

= algh) (=) + Beghzo) + Blgh) (0) + (gh)(z0).

We know from (51) that g3,(z0) # 0. Hence, if 8 # 0, we can find a sufficiently small & > 0
such that (u};)"(20) # 0, which gives an 7 satisfying (62). So let B = 0. Then

(u32)'(20) = (g) (20) + (95)'(20)-
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If this in nonzero, we can again find an 7 such that (62) holds. Thus, suppose

(g12)(20) + (933)'(20) = 0. (63)
From (54) and (55) we infer that

agiy(z0) + g4(z0) = 0. (64)

Eliminating a from (63) and (64) we get

(924’})’(20)9f2(20) - g;z(zo)(g;'2)'(zo) = 0.

This, however, contradicts (52) and shows that (63) is impossible. m

Slight modifications of the previous proof give Lemma 6.1 with (py,p2 + 1,43 — 1)
replaced by

(s 2 + 6, 3 — 8), (p1 + 6, p2, pta ~ 8), (1 + 6, p2 — 6, pa)

where § € {—1,1}. As in the case n = 2, repeated application of this procedure yields 3 x 3
matrix functions whose right partial indices are (g1, 02,03) and whose left partial indices
constitute any vector (Ay, A2, A3) such that A; + Ap + A3 = py + 2 + p3. Also as in the case
n = 2, we finally can pass from A to PAP with an appropriate permutation matrix P to
remove the requirement g, > g3 > ps.

At this point the proof of Theorem 1.6 is complete.
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