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Abstract. For the classical Markowitz portfolio biobjective optimization problem
there is established a biobjective dual optimization problem. The both objectives for
the primal problem are the espected return and the variance of a portfolio combined
by a number of risky securities.

For the Markowitz problem and its dual weak and strong vectorial duality assertions

are derived as well as optimality conditions are verified.
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Let us consider n risky securities Sy,...,S, and suppose that r; denotes the return on the
security S; related to an unit of the staked capital. Moreover y; = E(r;) is assumed to be
the expected return of r; and with o; = E[(r; — p;)(r; — ;)] the covariance between riand
rj is denoted. Especially the variance of r; is represented by oy;.

In order to reduce the risk of the invested assets at the capital market diversified portfolios
are established.

Let z; be the share of the investor’s assets that are allocated to the security S;. Therefore
we have a portfolio of securities with the expected return E(z) = Z:xiui with il T =

i= i=

land z; > 0 .

That portfolio has the variance V(z) = 3. oy;z,z;.
: 1,J=1

Corresponding to the Markowitz theory (cf. Markowitz (1952)) the investor intends to ma-
ximize the expected return and to minimize the portfolio risk. Because these two objectives
are in conflict an adequate and reasonable solution notion is that of efficiency.

Thus we have the classical and wellknown portfolio optimization problem with two objecti-



ves (cf. Markowitz (1989), Linke (1996), Elton (1991) and Sharpe (1970))

1z —-E(z —zn:/‘ixi .
(P) F(x)r—-(f()):( ())z =1 —v— min

n
fg(.’l)) Z O;T;iX; s.t. z =1
1,7=1 g1

z; 20,i=1,...,n,

z=(zy,...,z0)7T.

A point ¢ = (z1,...,z.)T that is fulfilling the constraints 3. z; = 1,z; > 0,i = 1, ... ,m, is
i=1

said to be an admissible point to (P) . Let us recall the definitions of efficiency and proper

efficiency (cf. Gopfert (1990) and Jahn (1986)).

Definition 1
An admissible point T= (Zy,...,%,)T is said to be an efficient point (or solution) to (P) if
there is no admissible point £ = (z,...,z,)T such that

fi(z) € fi(2),i = 1,2, and fi(z) < f;(z) for at least one index j € {1,2}.

This is the usual definition of Pareto-optimality in the case of two objectives.

Definition 2
An admissible point T= (Z,,.. +Z,)T is said to be properly efficient (point or solution) if
there ezists a scalarizing vector A= ()o\l,j\g)T, ,o\';> 0,2 = 1,2, such that

f\l fl(gf) + :)\2 f2 (‘%) < 3\1 fi(z) + /\02 fa(z) for all admissible points x.

Obviously, a properly efficient point turns out to be an efficient one, because of the convexity

of fi and f;.

Our aim is, as announced; to establish a vectorial dual problem (P*) to the vectorial port-
folio optimization problem (P) and to verify weak and strong duality assertions as well as
optimality conditions for properly efficient solutions to (P) and efficient solutions to the

dual problem (P*) , respectively.

As dual problem (P*) to the portfolio optimization problem (P) we introduce the following

also bicriterial optimization problem

(P) Gly,2) = ( @6 ) "

= n = — v—max_
92(y, 2) 2= 2 oYY (y,2) € B



with the dual variables y = (y1,...,y.)T € R” and 2 = (21,2,)T € R? and the set B of

restrictions
B= {(y,z) €R"xR? : 3A; >0,),>0 with
- 2 (1)
M5+ 20y+] < —hp}

2] 22
The vector 4 = (p1,...,a)7 is the vector of the expected returns of the securities r;,i =
1,...,n (cf. above). By 0 = (0y;) 1,5 = 1,...,n it is denoted the covariance matrix to the
returns ry,...,r,. The notation v — max means here the determination of efficient (Pareto

- optimal) elements. The definition is analogous to that one of efficient points to (P).

An element (point) (y, 2) € B is called admissible to (P*) .

Definition 3
An element (3;,3) € B (admissible to (P*) ) is said to be an efficient solution to (P*) i
there is no admissible element (y, z) € B such that
s(w2) 2 g ,i=12
and g;(y,z) > gj(!t},g) for at least one index j € {1,2} .
We call the problem (P*) dual portfolio optimization problem. We are entitled to do so
because (P*) indeed has got properties which are generally characterizing duality in multi-

objective optimization. Namely, let us consider two multiobjective optimization problems,

a minimum problem
F(z) - v—min (2)
T€A
and a maximum one

G6) = v = max | (3)

It is assumed that F(z) = (fi(z),..., fm(2))T ,G(y) = (91(¥),-- ., 9m(y))T € R™ .

2

The usual partial ordering in R™ is given by u = (uj,...,un)T 2 v = (v1y. . vm)T if

> .
u;=v for 1=1,...,m.

Definition 4
If there is no z € A and no y € B such that it holds G(y) > F(z) and G(y) # F(z) then
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this property is refered to as weak duality between (2) and (3).
Obviously, this represents a natural generalization of the so - called weak duality property

within the usual scalar optimization where there is only one objective function, i.e.

F(z) = fi(z) € R, G(y) = g1(y) € R and weak duality means G(y) < F(z) for all
admissible y and z , respectively. This is briefly described by the formulation

sup G(y) < inf F(z). (4)

In general there can be a duality gap meaning sup G(y) < inf F(z). If there is equality in
(4) we speak of so-called strong duality. Sometimes strong duality is meant in the stronger

sense that moreover there exist solutions to inf F(z) and (or) sup G(y) , respectively, i.e. it

is e.g. fulfilled maxG(y) = G(.'(}) = F(Z) = min F(z) .

Therefore, if for multiobjective problems (2) and (3) besides weak duality there exist points
Ye B and T€ A (admissible points) satisfying F(Z) = G(f}), then we call this behaviour
vectorial strong duality. There one can distinguish between a weak and a strong form of
strong duality depending on that fact whether the equality F(z) = G(ﬁ) is fulfilled only for
certain special (single) points z and Y or for all (propely) efficient elements to (2) and (3),

respectively.

Indeed, it follows from weak duality and equality of the objective function values G(i}) =

F(z) that ¥ as well as Z are efficient to (3) and (2), respectively.

Then the weak form of strong duality can be geometrically interpreted as touching of the
image sets and also of the efficient frontiers of (2) and (3) in single points and the strong
form of strong duality means that the efficient frontieres coincide at least for all efficient
points to (2) or to (3) or even for all efficient points to both (2) and (3). We have to
distinguish these different cases because it can be for instance that there are efficient points
to (3) to which there is no corresponding efficient point to (2) and vice versa. Then we have
indeed only the coincidence of pafts of the efficient frontieres of both problems. In other
words, the efficient frontieres of (2) and(3) can have a common intersection or even coincide
in the case of strong duality. Otherwise, under the assumption of weak duality there is a

duality gap as in sclalar optimization.

It is obviously from the definition of weak duality that it gives a natural possibility to
construct lower bounds for the efficient solutions of the primal problem (2) and upper ones

for the efficient points of the dual problem (3) as in scalar optimization. Namely, if we are
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given for example an admissible point ¥ to the dual problem (3), then G(?j) represents a
lower bound in the sense that there are no admissible points z to the primal problem (2)
such that F(z) < G(?j) and F(z) # G(!j) in the sense of the partial ordering considered for
(2) and (3), respectively. Moreover, if we find a point z fulfilling F'(Z) = G’(Z(}) then we know
of efficiency of z. Finally, in the case of strong duality one can solve the dual problem (3)
getting an efficient solution ¥ and G(&), respectively, and this yields the objective function
value F(z) = G(?;) of a primal efficient solution Z, i.e. the remaining problem is to solve

that equation F(z) = g with known right hand side g = G(f})

An additional opportunity is the establishing of optimality conditions to the primal and dual
problem by means of strong duality. That gives also conditions, equations or inequatities
etc. for the determination of efficient solutions. So one can see that assertions of duality

play an useful role as both in scalar optimization and in multiobjective optimization.

There are some comprehensive representations on duality in multiobjective optimization.

We refer for instance to Gopfert (1990), Jahn (1986) and Sawaragi (1985).

Several authors have tried in different ways to apply the general concepts of duality in
vector optimization to concrete problems or have established direct consideration for such

problems independently from a general approach.

A first dual pair in linear vector optimization has been given by Gale, Kuhn and Tucker (1951).
Later a dual problem in linear vector optimization which turns out to be a direct genera-
lization of scalar linear dua_lity was introduced by Isermann (1978). Duality for geometric
vector optimization has been verified by Elster (1989). Explicit formulations of dual pro-

blems also have been derived for multicriterial location and control-approximation problems

by Tammer (1991), Wanka (1991a) and Wanka (1991b).

But to the best of our knowledge until now there are no investigations concerning multiob-

jective duality for the classical portfolio optimization problem of Markowitz.

In the remainder of the paper we will point out weak duality as well as strong duality for
the portfolio optimization problem (P) and its dual (P*) .
At first we start with a weak duality theorem (cf. definition 4).

Theorem 1

There is no admissible point x to (P) and no admissible point (y,z) to (P*) such that
Gly,2) > F(s) and G(y, 2) # F(z).



Proof: Let us assume that the assertion of theorem 1 is not true. Then there exist z
admissible to (P) and (y, z) admissible to (P*) with corresponding nummbers A, > 0 and
A2 > 0 and a vector k = (ki,k3)T, ky > 0, ky > 0, k # (0,0)7 satisfying the equation
G(y,z) = F(z) + k. This implies

Mfi(@) + A fo(2) = Mgi(y, 2) + Aega(y, 2) — Miky — Aoka < Mgi(y,2) + Xaga(y, 2) .

On the other hand we show subsequently

/\lfl(-'ll) + A2f2(37) 2> ’\lgl(ya Z) + ’\292(3/,2)

which is giving a contradiction.

For that we remark in the first step that from the inequality defining the set of restrictions

B of (P*) follows with z > 0 (ile. z; 20,1=1,...,n)
0>z A\ (e + (21,... ,2)T + A (20y + (22,...,2)7)].

This allows the estimate

M) + A fo(z) = M(-E(z)) + A, V(z)
= A (— g:l u;z;) + A2 i,]i_:l:vixjdi,j
> M(—zTp+2T(u+ (21,...,21)7)
+ A (i’jz’; zizjoi; + xT(20y + (22, . . ., zg)T)) (5)
= Az 'Zj:l z; + AzTOz + 20270y + Ap2, iil z;
= A2z -; Aazy + Ao(z + 2y)TOz )

because of 0T = 0,ie zTOy=yT0Tz = yTox

Now we use the Schwarz inequality for positive semidefinite symmetric matrices (cf. the

following Lemma 1), i.e. it holds

-270z < 2(yT0Oy)i(sTO)*
< yToy+z2Toz (6)
(with 2ab< a?+ 8, a= (yTO'y)% , b= (zTO'x)%) )

This yields

—-yTO'y <(z+ 2y)T0':c . (7)



Substituting (7) into (5) completes the proof

MAE) + Mafa(z) > Mz + dazg — MyT oy = Mai(y, 2) + A2g2(y, 2) a

Lemma 1

Let 0 = OT be a positive semidefinite (n,n)-matriz. Then it holds

02| < (yTOy)3 (" o)t (®)
Proof: It is well known that for a positive definite matrix @ = 07 by (y,z), := yTOz
there is defined a scalar product. Then (8) obviously represents the Schwarz inequality for
that scalar product. If 0 is only positive semidefinite, several cases have to be considered.

For yTOz = 0 (8) is trivially fulfilled. With y70z # 0 (8) can be proven as for positive

definite matrix 0, namely starting with

0< (y—Az) 0y - Az) = yTOoy — AzTOy — AT 0z + \22T 02
and substituting

A= (y"oy)(y"ox)" .

This gives
0< —y"0y+ (y"0y)(y"02) (2" 0z) (9)
and therefore for y with y70'y # 0 arises (8) from (9). But for y with yTOy =0 (9) cannot

be divided by y" 0y and moreover (8) is violated because of yT Oz # 0.

But this situation is not possible, since y7 O’z # 0 implies also yTOy # 0. To verify this let
us assume y Oy =0foray#0.

Let Ary.. ., > 0, M40 = ... =X =0,k < n—1, be the eigenvalues of O with the
corresponding system of orthonormal eigenvectors ' to A;,i = 1,... n. Let be y = i ay'.
. =1

Itis Oy =0for i = k+1,...,n. Therefore it is

n T n n T k k
0=yToy= (Zaiyi) o (Z ajyj) = (Z oz,'y") (Z aj/\jyj) = Z/\,-a? .
] =1 i=1 =1

This implies &)y =a; =...=ax =0 andsoy = ¥ oyt and Oy = f: a;0y =0, ie.
. i=k+1 i=k+1
from yTOy = 0 necessarily follows Oy=0.



Hence there is also y” 0z = 270y = 0 which is contradicting y" Oz # 0.
Furthermore, we see that for yTOy = 0 (8) is trivially fulfilled. 0

In order to establish strong vectorial duality we need the following proposition concerning
optimality conditions for the scalarized portfolio optimization problem (P,) to (P)

(/\ = (/\I)AZ)a /\,‘ > O,l - 1,2)

(P\)  inf {-xpTz + 2zTO} .
s.t. Ez; =1
=1

z;20,i1=1,...,n
This is a quadratic programming problem. For such problems there exists a well elaborated

duality theory (cf. Elster (1977) and Dorn (1960)).

For our special problem (P,) a suitable dual problem reads as

(P) sup {=dyTOy +w}.
y€e€R*weR,

w
20y+ | S =
w R}

Between (P,) and (Py) there is strong duality, i.e. inf(Py) = sup(Ps). This is due to the
classical duality theory. Even (Py) is solvable.

By means of duality optimality conditions can be derived.

Proposition 1

Let 7 be a solution to (Py). Then there exists a solution (§,w) to (Py) fulfilling the optimality

conditions:

i) 7054+ 270z + 2570z =0,
.. w
i) #7005+ ¢ |+ Ap) =0.
w
Remark: The second condition can be interpreted as complementary slackness condition.

Proof: Because of strong duality and solvability of (P;) there is the identity of the optimal

objective function values of (P,) and (P}) for the solutions Z and (g, W), respectively, i.e. it



holds
0=-MpTZ4+ 0870z + \gT0§—w . (10)

It is straightforward to verify the following identity.

@ .
0=2X05"0z - zT | 20,09+ | : 4. (11)
D
Adding (11) to (10) we obtain
W
0= —MuTZ+ X270 + MjT 0§ — 0+ 22,5707 — 7 [ 220,05 + | : + w
W
(12)
w
= ("0 +370z + 25703 + [-zT(2005 + | |+ M)
W

But because of (6) and since & and (, 2) are admissible to (Py) and (PyY) , respectively,

these two expressions within the square brackets turn out to be nonegative.

Now (12) indeed implies that the terms inside the square brackets are equal to zero, i.e. i)

and ii) are fulfilled. 0

We notice, if i) and ii) apply for admissible z to (Py) and (3, @) to (Py) then these elements
represent solutions to the corresponding problems. This results by consideration of the proof
of Proposition 1 and starting with (12), which yields (10) along (11). But (10) is nothing
else than the equality of the objective function values of (Px) and (P3) and therefore Z is a
solution to (P,) and (§, @) is a solution to (P}) , because they are admissible. We formulate

that as Proposition 2.

Proposition 2
Let z be feasible to (P)) and (§,w) feasible to (P}). Moreover, let i) and ii) from Proposition

1 be satisfied. Then T and (§,W) turn out to be solutions to (Py) and (Py), respectively.

Remark: It can be pointed out that i) of Proposition 1 is equivalent to
2'0(z+9)=0 and §TO(z+§)=0. (13)

Adding up these two equations implies immediately i).



To verify (13) starting with i) let us have a look at (6). From i) we see by replacing z by =
and y by ¥ that the inequality (6) is fulfilled as equation. Hence, this means

—2:Toy= 2yT0y)2(z70%):
= yloy+z70z.

Substituting @ = (570%)7, b = (2T0%)7 we have 2ab = a? + b? which is equivalent to
a=b,ie gloy=1zT0z%.
With i) this yields

0= 1F"05+270% +2§70z) = L2270z + 2§70z = (z + §)T Oz

= z70(z +7)
and analogously

0= glo(z+7y).

Therefore (13) is true.

Now we are able to prove the announced strong duality theorem for the multiobjective

portfolio optimization problem (P) and its dual (P*).

Theorem 2
Let Z is assumed to be a properly efficient solution to (P).
Then there exists an efficient solution (?j,g) € B to (P*) and it holds the equality of the

objective function values

F(z)=G(9,%). (14)
With the corresponding scalarizing numbers x> 0, 1=1,2, (¢f. definition 2) T and (I‘j,g)
satisfy the following characterizing conditions (optimality conditions)

X oT o oT o oT

i) YOY+10242Yy02=0 (15)
implying
Is] [ OT o [+
TOE+Y)=0,Y0(E+Y) =0, (16)

.. oT |o gl 4 2'2

W) T (M (p+]| ¢ +X 20y +| : =0 (17)

‘gl g2
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Proof: Let T be properly efficient to (P). By definition 2 of proper efficiency there exists a
corresponding scalarizing vector A= ()0‘1 , j\g)T, :\,-> 0,: = 1,2, such that X\T F(z) zf\T F(z)
for all admissible x to (P). In other words, Z is a solution to the scalarized problem (Pj\’)‘
With the assigned dual problem (Pf) we have strong duality and also the existence of a
dual solution (¥, ), i.e. min(P)‘o) = ma.x(P:’\,'). With the conditions i) and ii) of Proposition
1 there is established condition i) of Theorem 2 (it has the same form as 1) of Proposition

1) and it holds

oT 0 0 1‘7) 4
T (2X09+] i 1 +dp)=0. (18)
w .

Let us define 2= (gl,gz)T by

o oT )
2= —pu" T,20:=-2Y 0z . (19)

Firstly we establish the strong duality relationship F(z) = G(&, z). Afterwards we check
the admissibility of (.13, z) with respect to (P*). We consider the components of
G(&, z) = (gl(f;,g) , g2(§,§))T. Using (19) and i) there is

gl(y,g) = 2’1: —/LT%= - Z: Hi fo”i= “E(%) = fl(:%) ’
0o o o OT o i_l:T o OT [
9,5 =% - i oi= 2§ 0t - § o}
oT o n o o0 0 o
=z 0z= ) oy Tig;=V(z) = fo(z) .

t,1=1

Altogether this is F(z) = G(.{},g). To point out (?;,5) € B (i.e. admissibility) we calculate
taking into consideration (18) and (19)

o o o o oT
f\1§1+/\222= —AluT§—2,\2y0'x
oT ? ° o oT L?) o M o 0 (20)
=z (—1\1#—2/\20'!/)=$ : =w T, =w .
o4 i=1
w

Notice that (3?, ) is admissible to (P’\.',") (it is even a solution to (P7)). Therefore it satisfies
A

the inequality

o

2000+ 1| < —hp.

So
-y
£3
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Replacing (20) one obtains

o

o

o o 0 Z_l o 2 0
20 Y+ M| o A < =M p,
2y 29 R'_:_
l.e.
o ‘gl | o 0 g'2
M (p+ of Y+ X (20Y + of ) < 0.
2] 29 R'J:_

This is the wanted inequality guaranteeing (?j,g) € B. Finally , F(z) = G(i},zo') and the
weak duality assertion of Theorem 1 shows that (¥, 2) is efficient to (P*).

The conditions (18) and (20) imply ii) of Theorem 2. This completes the proof. 0
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