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Abstract

The paper deals with the determination of statistical characteristics of eigen-
values for a class of ordinary differential operators with random coefficients. This
problem arises from the computation of eigenfrequencies for the bending vibrations
of beams possessing random geometry and material properties. Representations of
eigenvalues are found by applying the Ritz method and perturbation results for ma-
trix eigenvalue problems. Approximations of the probability density function and
the moments of the random eigenvalues are given by means of expansions in powers
of the correlation length of weakly correlated random functions which are used for
modelling the random terms. The eigenvalue statistics determined analytically are
compared favourably with Monte-Carlo simulations.

1 Introduction

The paper considers the computation of eigenfrequencies for the bending vibrations of
beams possessing random geometry and random material properties. This investigation
leads to an eigenvalue problem for ordinary differential operators with random coefficient
functions. Then the resulting eigenvalues are random variables for which certain statistical
characteristics as probability density functions and moments have to be determined.

The random terms involved in the problem can be the radius of the circular cross section
of the beam and the mass per unit. Both quantities are assumed to have random fluctu-
ations around a constant mean along the length of the beam. The random fluctuations
are modelled by Gaussian weakly correlated random processes. The concept of weakly
correlated processes is based on the idea that these processes have no distant effect. The
values of the process at two points are independent if the distance of these points exceeds
a certain quantity ¢ > 0. This quantity ¢ is refered to as the correlation length of the
random process and is assumed to be sufficiently small (see [6, 8]).

Approximations of probability density functions and moments of the random eigenvalues
are found by applying the Ritz method, perturbation results and using expansions in
powers of the correlation length €. In [8] the asymptotic normality of the eigenvalues
for € | 0 is proved. Hence, the eigenvalue distributions may be approximated by the
corresponding Gaussian limit distributions. In the following these limit distributions will
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be refered to as classical or low-order approximations since they take into account only
the leading terms of the expansions in powers of ¢.

Results of Monte-Carlo simulations show a good coincidence with the low-order approx-
imations if ¢ is near to zero. However, regarding larger values of ¢ significant differences
between low-order approximations and estimated statistical characteristics come into con-
sideration. In particular deviations from normality have been observed. In order to find
more accurate approximations in this paper higher-order expansions are derived, i.e. ex-
pansions including not only the leading but also the following terms. The higher-order
approximations will show a much improved coincidence with the results from Monte-Carlo
sitnulation.

Section 2 deals with the boundary value problem for an ordinary differential operator
which describes bending vibrations of beams. Further the model of random coefficients
resulting from the random geometry and material properties of the beam is introduced.
In Section 3 applying the Ritz method an eigenvalue problem for random matrices is
derived. The eigenvalues are represented by perturbation series with respect to the random
fluctuations.

In Section 4 these representations are used to find moments and probability density func-
tions of the eigenvalues by means of expansions in powers of the correlation length ¢ of
the weakly correlated processes involved in the model of the random fluctuations. Section
5 gives a sketch of the Monte-Carlo simulation procedure investigating statistical esti-
mates of probability density functions and moments of the eigenvalues. Finally, Section
6 presents numerical results and compares statistical estimates with the approximations
found in Section 4.

A further application of the presented method to buckling problems of a simply supported
beam with a random geometry can be found in [7].

2 Bending vibrations of random beams

We consider a thin and simply supported beam of length [ = 1 possessing a circular cross
section with radius r (see Figure 1 ). Let the cross sectional area be denoted by A, the
mass per unit by p, the bending stiffness by Eol with the modulus of elasticity Fy and
the moment of inertia of the cross sectional area /. Bending vibrations are investigated

in terms of the transverse displacement u = u(z) of the beam. The squares of the
eigenfrequencies of, 1 = 1,2..., for the bending vibrations are found to be equal to the
eigenvalues A;, 1 =1,2..., of the boundary value problem for u (see [2])

(Eolu")" = X pAu, (1)

u(0) = u(1) = u"(0) = u"(1) = 0.
Now we describe the random geometry of the beam. The cross sectional area is assumed
to be circular, where the radius r varies randomly along the length of the beam, i.e. r is

a random process r = r(z,w), 0 < z < 1, and therefore

A=A(z,w) =7r¥(z,w) and [ =I(z,w)= gr"(:v,w)



Figure 1: Simply supported random beam with circular cross section

are random processes, too. Further we consider random material properties by modelling
the mass per unit as a random process p = p(z,w) while in this paper the modulus of
elasticity Fy is assumed to be constant.

To be more precise the radius and the mass per unit are assumed to have the form of
random perturbations of the constant mean values

r(:c,w) =ro+ 7'6(‘1"7“)) and p(x,w) = po + Pe(wi)

respectively, where 7. and p. are independent and weakly correlated random processes
with correlation length €. The characteristic property of weakly correlated processes is
that they do not have a distant effect. The values of the process at two points do not
correlate (are independent) if the distance between these points exceeds the correlation
length €. The correlation length is supposed to be sufficiently small. A great number of
random phenomena can be modelled by these functions. The idea of weakly correlated
processes goes back to Ornstein and Uhlenbeck (see [5]) who investigated the Brownian
motion of a small particle surrounded by a gas. A detailed representation of the theory
and a large number of applications to equations of mathematical physics can be found in

[6].

The definition of weakly correlated processes contains

E{re(z)} = E{pe(z)} = 0

and

E{r(z)r(y)} =0 and E{p.(z)pc(y)} =0 for|z—y|>¢
E{r.(z)re(y)} = Re(z,y) and E{p.(z)p:(y)} = Qc(z,y) for |z —y|<e

for the means and the correlation functions of r.(z), p.(z) respectively, where R.(.,.)
and Q(.,.) denote some correlation functions. Additionally, we assume that r,(z,w) and
pe(z,w) are Gaussian processes. Then, all information about the distribution of r. and p,
is contained in the first- and second-order moments, i.e. the functions R.(.,.)and Q.(.,.)
describe the processes completely. Especially the representation of higher-order moments
of Gaussian processes in terms of the correlation function can be applied.
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Since the coefficients of the eigenvalue problem (1) are random processes the eigenvalues
X; and therefore the eigenfrequencies a; = \/A;, i = 1,2, ..., are random variables. The
aim of the investigation consists in the computation of the probability density function
(p.d.f) py,(z) of the random eigenvalues

P(\i(w) < 2) /p,\ z € R,

and of moments, especially the mean my, = E {);} and the variance 0%, = E {(X\; — my,)?}.

As a first step to find approximate results the Ritz method is applied to derive an eigen-
value problem for random matrices (see Section 3). For this end the coeflicient functions
of (1) are denoted by

flz,w) = Epl(z,w)= E'Og-(rg + re(z,w))?

g(z,w) = p(z,w)A(z,w) = m(po + pe(z,w)(ro + re(,w))?

and the corresponding fluctuations around the means E {f(z)} and E {g(z)} by

f(z,w) = f(z,0) —E{f(z)}
= gE'O [(ro + re(z,w))* = E {(ro + re(a:))“}]
ge(z,w) = g(z,w) - E{g(z)} (2)
= 7 [(po+ pe(2,0))(r0 + re(2,w))* = poB {(ro + re(2))*}] -
Since r, and p, are independent and weakly correlated processes the processes f, and g.

are weakly correlated, too. Furthermore, the vector process (f;,g.)” is weakly correlated
connected with the correlation length e (see [6]).

Finally, using the notations above the eigenvalue problem (1) can be written as

(fu")" = Agu, (3)
u(0) = u(1) = «"(0) = u"(1) = 0.

3 Ritz method for random eigenvalue problems

Using the Ritz method a sequence of functions {¢;}32, is chosen to be a basis of the
energetic space of the differential operator (fu")" and the boundary conditions in (3). In
Michlin [4] the polynomials
é1(z) =z — 22° + =
¢2(z) = Tz — 102 + 32° (4)
$i(x) =z (1 —z)3, i>3.
are proposed which are used afterwards.

The resulting Ritz equations can be written as a symmetric matrix eigenvalue problem
(A+A@W)) ™ =" (B + B(w)) " (5)
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where "\ € R denote the eigenvalues and "z € R" the eigenvectors. The elements of the
n X n matrices A, B, A(w) and B(w) have the form

@ = [B{f@)} #@)$)x)de  Ty(w) = [le,w) 6l(2) (z) do

1

by = [B{g@)} 4:(@)di(e)de  By(w) = [au(e,w) di(x) dy(a) de,

0

for 1 <4,j < n. The eigenvalues and the corresponding eigenvectors of the n-dimensional
matrix eigenvalue problem (5) are denoted by ™\, (w) and "wyforg =1,... ,n, respectively,
where it is assumed that

"Al(w) < Ag(w) <L <M (w) a.s.

Then, approximations of the eigenvalues and eigenfunctions of (3) (or (1)) can be obtained
by

Ag(w) = "y(w)

n

"ug(z,w) = Z"xg;(w)qbi(x).

=1

Approximations of the p.d.f. and the moments of A;(w) can be computed by the corre-
sponding characteristics of "A,(w). Therefore perturbation series of the eigenvalues "\, (w)
with respect to the random perturbations A(w) and B(w) (see Eq. (5)) are derived.

In a first step the averaged matrix eigenvalue problem

A'yw="uBTy (6)
is considered which can be obtained from Eq. (5) by replacing the random matrices A(w)
and B(w) by their zero means. The matrices A and B are real and symmetric, B is
positive definite. Denote the eigenvalues of Eq. (6) by

T <y << My,

and the corresponding eigenvectors by "Y, = ("Yg1,---,"Ygn)", g =1,...,n. The eigen-
vectors "y, are assumed to be normalized by

<B nyg’ nyh>= ghy g,h=1,...,n,

with the scalar product (.,.) of R". Additionally, the eigenvalues y,, g = 1,... ,n, are
supposed to be simple.

The eigenvalues "\;(w), g =1,... ,n, can be represented by
"Ag(w) = Ty — Z "Agk(w)
k=1



where "\gx(w) denote the homogeneous terms of order k with respect to the perturbations
@,;;(w) and b;j(w). Then the relations

"Agi(w) = 9849(w)

M) = 30— I8 (w) — dyg() TR (w)

k=1 Hkg
k#g
" ) ! 95 93, 93 ~ 1 952
Aga(w) = D — I8gk(w) ?8kj(w) ?8jg(w) = Y — ?8ge(w) ?35k(w)
k,j=1 HikgHig k=1 ukg
kii#g s
n 1 N . ~ R )
- Z .‘7 [dgg(w)gszk(w) +2 95g4(w) dgk(w)gsglc(w)] + d; (W) 9554 (w)
7
are obtained (see [3]) where the notations
Heg = "prk—"pg, k,g=1,...,n,
ygij(w) = E nyirnyjs(nﬂgl_)rs(w) - Ers(w)), ,7=1,...,n,
r,s=1
(ZJ(w) o E nyirnyjs Brs(w), 'l,] = 1, [
r,g=1

have been used.

4 Expansion of moments and probability density func-
tion

In this section expansions of the moments and the p.d.f. of the eigenvalues ")\;(w) of the
matrix eigenvalue problem (3) are investigated to find approximations of the corresponding
eigenvalue characteristics with respect to the original problem (1).

Using the results of Section 3 the eigenvalue "\;(w) can be represented by the perturbation
series

"Ag(w) = "pg(w) — (M1 (@) + "Ag2(w) + "Aga(w) + "hy(w))

in terms of the random variables @;;(w) and b;;(w). It can be seen that "\,(w) contains

linear combinations of 93;;(w) and dij(w) as well as products of two and three of these

o0
random terms and the remainder term "hy(w) = Y "Agk(w) consists of linear combinations
k=4

of products of at least four such random terms. The random variables 95;;(w) and di;(w)
itself are linear combinations of the random perturbations @;;(w) and b;;(w). Hence, the

eigenvalues "\,(w) can be represented by a polynomial non-linear function d(.) of the 2n?
random variables

(W), ..., TGn(w), bin(w),... b (W)
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with a remainder term, i.e.

2n? 2n?
d(yla--- ay2n2) = d0+2daya+ Z daﬂyayﬁ
a=1 a,0=1
2n? v
+ Z daﬁ'y yayﬁy'y (Z ya) yl’ . ,yn)~ (7)
a,B8,y=1

This representation contains the real coefficients dy, da, dyg, dugy, a real number v > 2
and a function h which is bounded on K5(0) = {y € R™ : ||y|| < 6} forad > 0. In general,

it is a difficult procedure to find at least approximately the distribution of d(@1,. .. ,bun)
for a given distribution of (011( | n,,(w)) This can be established by the non-
linearity of d(.) and the mutual dependence of the random variables @, (w), ... , by, (w).

In the considered case a practicable approximation of the desired distribution can be
found since the random variables @y (w), ... , ban(w) are integral functionals of the weakly
correlated processes f.(z,w) and g.(z,w) given in (2), i.e. it holds

1 1

B5(w) = [f(e,w) (@) i) do and By(w) = [au(z,0) di(z) d5(a) de

0 0

for 1,7 = 1,...,n. For these integral functionals as well as for polynomial non-linear
functions (7) of integral functionals the theory of weakly correlated random functions (see
[6, 3]) proves the asymptotic normality for ¢ | 0 and provides expansions of the moments
and the p.d.f. in powers of the correlation length ¢. For the sake of brevity we give only
the reults used and refer to the literature.

First the moments of order k of d(w) are considered which are given in terms of the
"standardized” random variable

d(w) = —=(d(w) — do) (8)
where the term ¢ is determined by the condition
{(d E{d}) }—1+0 (&).
Then the moments of d(w) can be derived in the form

ek+—§{ o (ke Rag + e R} ¢ +ole) K even

E{d}= (9)
s (P + () VA + o0
where
kk!k =(k—1)-(k—=3)-...-3-1 for k even and k > 0,
er = 22. '2— !
0 for k odd or k < 0



i
The terms R, 7,1 =1,...,4,6, are given in [3]. They can be determined by means of the
so-called intensities

and the terms 4 contained in Eq. (9) are defined to be zero for j < 0.

aij(z), aijr(z), aiu(z), 4,5,k 1€ {1,2},

describing certain statistical characteristics of the involved weakly correlated processes
fie := f. and fac := Ge (see [3]). For instance, the intensity a;; is defined by

ai(@) = lim / E {fie(®) fre(z + 2)} dz.

Similarly, the intensities a;jx(z) and a;ju(z) are given by the corresponding limits for the
the third- and fourth-order moments, respectively. Since the random fluctuations of the
radius r.(z,w) and the random mass per unit p.(z,w) are assumed to be. Gaussian, these
moments can be expressed in terms of the correlation functions R.(z,y) of r. and Q.(z,y)
of pe.

Using the intensities the expressions R, 5 can be found as sums of one-dimensional inte-
grals over [0, 1] whose integrands contain products of the intensities of f. and g. and Ritz
basis functions ¢; and/or its derivatives ¢;, i =1,...,n.

Now the p.d.f. of the "standardized” variable d(w) denoted by p;(u) is considered. Since

for € | 0 the random variable d(w) is asymptotically Gaussian with zero mean and variance
1 it is convenient to study deviations from the normality for a correlation length ¢ > 0 by
means of the Gram-Charlier series

1 1 = Ck
pi(u) = —=exp (—3u%) (1) Z Hi(w).
¢ V2 2- ) & k!
Thereby the functions Hy(.) denote the Chebyshev-Hermite polynomials of order k defined
by

Hi(u) := (=1)F exp (—;-u2> : %exp (——%u?')
[

ENTE 3
—_—

K .
= LV

i=0

and ¢, are real coefficients which are to be determined. Applying the orthogonality of the
Chebyshev-Hermite polynomials

/ exp (%uz) Hi(u)Hi(u)du = V21 k8,

-0

the coeflicients can be calculated as

o = (=1)F / p; (u) Hy(u)du



Substituting the moments E{J"'”} of the above representation for ¢, by Eq. (9) the

following expansion of the p.d.f. of d(w) can be obtained containing terms of order O(V/¢)
and O(e)

pz(u) = \/12_7rexp <_%u2> [1 + (RLJHI(U) + %R3,3H3(u)) Ve

1 1 1
+ (5 R2'JH2(U) + Z R4’JH4(U) + g RS’;Hg(u))6 + 0(6)] .

Finally, approximations of the moments and the p.d.f. of d(w) shall be derived. The
relation (8) leads to

6 ~
d(w) = %d(w) + do
and then to the mean and the variance

_E{d} = do 403
= {} = 0+TE+0(€)

ol =E {(d - md)z} = t—lz— [e + (Rz,;— Rf'g) 62] + o(e?).

Furthermore, the p.d.f. of d(w) — dy can be approximated by

Piraol) = ifp(%)
o) o ) ()
s (i) man)tranCo) . o

Therefore a higher-order approximation of the p.d.f. ps_g,(u) has been derived. The
corresponding low-order approximation

t t2 ¢ ¢
Pa—do(w) = mexp (—Egu) [1+0] = \/2Teexp (—-Q—Eu) . (12)

is obtained if all higher-order terms of the Gram-Charlier series in the representation (11)
are neglected. Eq. (12) corresponds to the result of the asymptotic normality of d(.) (see

[8]).

Remark 1 Results for the joint distribution of a vector-valued non-linear function
d(w) = (dy,...,dn)", m > 1, are also available (see [3]). These can be applied to in-
vestigate the joint distribution of several random eigenvalues.

5 Monte-Carlo simulation

The accuracy of the results above can be assessed by comparing the analytical results
with estimations from Monte-Carlo simulations. For this purpose the eigenvalues of (1)

9



are determined numerically by means of the Ritz method for a couple of realizations of
the Gaussian random processes 7.(z,w) and p.(z,w).

A class of weakly correlated processes is chosen for which realizations can be generated
simply. The generation is based on an equidistant partition of the domain of definition
of the random processes [0, 1] which is slightly extended to avoid boundary effects. The
values of the process at the partition nodes -,%,—,i =-3,...,N+3, N> 1, are obtained
from a sequence of independent Gaussian random variables and the process values between
the nodes are found by polynomial interpolation, i.e.

re(z,w) = Gi(z) &(w) + gri(@) €1 (w)
pe(z,w) = qpi(x) vi(w) + goiz) Vitr (w)

for z € [ﬁ, 3{,—‘], i = —3,...,N +2. In these formulas (£) and (1;) denote sequences of

independent zero mean Gaussian random variables with variances of = Bk and o2 =
v?p,  B,7 > 0, respectively. By this choice the variances of the random radius and
mass per unit are related to the constant means ro and po and can be controlled by the
parameters 3 and 7.

The interpolation functions g,i(x) and g,;(z) are defined by

gri(z) = ¢-(Nz —1) where g¢.(z):= 6z° — 152* 4+ 10z°
pi(z) = ¢o(Nz —1) where g,(z):=z

for which hold ¢.(0) = ¢,(0) = 0 and ¢.(1) = g,(1) = 1. Furthermore we define
G..(x) == 1 = g.i(z) and G,i(x) := 1 — gui(z). These interpolation polynomials guarantee
the respective smoothness of the random coefficients of the eigenvalue problems (1) and
(3), i.e. we derive continuity of the realizations of pe(z,w) and of the second derivative of
re(z,w).

Because of the independence of the random variables &; and v; the processes re(z,w) and

pe(z,w) are independent and weakly correlated with the correlation length e = %. In case
of z € [ﬁ, '—'I{,—'] ,i=0,...,N — 1, the correlation function of r, can be written as
Gri(2)gric1(v) for y € [, %]
E {7'5(1')7'5(1/)} — 0’? qri(x)qri(y) + qri(m)q”'(y) for yeE [ﬁa !_‘}tvl]
qri(m)qr£+l(y) for y € ['—-']ivia L}tv-—z']

0 otherwise.

A similar representation is valid for the correlation function of p..

Even though the random variables ¢;, v; are identically distributed fori = —3,..., N+3 the
processes . and p, are not (weakly) stationary. This fact is caused by the interpolation
between the nodes of the partition. However the processes are ”periodically distributed”,
i.e. the values of r, or p, at two points z,y in [0,1] are identically distributed for lz—y| =
%, k =1,2,.... These properties have to be taken into account for the computation of
the intensities a;;, a;;x and a;ju mentioned in the previous section.
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6 Application

For the purpose of illustration we present some results for the first (smallest) eigenvalue
A1 of (1). Using this eigenvalue the first eigenfrequency a; = /A, of the beam can be
computed. For instance in engineering this frequency leads to certain resonance condi-
tions. Now moments and the p.d.f. of the random eigenvalue \; = a? are given. From
these results subsets of the frequency domain can be determined which contain the first
resonance frequency with a prescribed probability.

The results are given for the "normalized” eigenvalue

2
Po n/\l.

n -—
AL = For2
It is possible to study the influence of the random fluctuations of the radius and the mass
per unit by variation of two parameters, namely the quantities B and vy which control
the variances of the random radius and the mass per unit, respectively. For the special
case § = v = 0 the eigenvalue "\; converges for n — oo to the first eigenvalue of the
non-perturbed differential eigenvalue problem, which is found to be g, = mt ~ 97.409.

Approximation Simulation
low-order higher-order
I max, & "0, max, R I+ 3@1%1',.;1 10° realizations
0 |0.1 97.409 97.478 97.498
0.1]0.1 101.214 99.333 99.400
0.2 0.1 112.503 104.362 105.023
0.1(0 101.214 99.201 99.328
0.1 0.1 101.214 99.333 99.400
0.1}0.2 101.214 99.553 99.617

Table 1: Means of the first eigenvalue 9\ for e = 0.1 ( N =20)

Approximation Simulation
low-order higher-order

R ny, -R? ny. .
B | v U'?X, R oyE afxl R ge+ __"_"lt2_l_-_*;€2 105 realizations
0 |0.1 7.116 7.157 7.158
0.1 0.1 38.582 37.617 37.455
0.2 0.1 161.122 146.759 143.797
0110 30.732 30.056 29.906
0.1]0.1 38.582 37.617 37.455
0.1]0.2 62.133 60.852 60.692

Table 2: Variances of the first eigenvalue 9\, for e = 0.1 ( N =20 )

The dimension of the matrix eigenvalue problem (5) which results from (1) by applying
the Ritz method was chosen n = 4. The value n = 4 leads to sufficiently accurate
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results for the first eigenvalue. In Table 1 and 2 low- and higher-order approximations
of the mean and the variance of "\, are summarized which result from the expansions
(10) for various values of the parameters § and v and for a correlation length ¢ = 0.1.
The analytical results are compared with Monte-Carlo simulations using a partition of

N = 20 subintervals of [0,1] (which gives ¢ = & = 0.1) and 10° realizations of r.(x,w)
and p.(z,w).
0.035 T T T T T T T T 0.04 T T
simulation - simulation -
0.03 fia ! low-order --- | 0.035 . low-order
higher-order — FAIAN higher-order —
oo b \
0.025 +
0,025
0.02 |
0.02 i
0.015
0.015 }
oo
0.0t
0.005 0.005 |
-0.005 - L. L 4 " L L 4. -0.005 L - A - 4 L
20 40 80 80 100 120 140 160 180 200 2 40 60 20 100 120 140 160
(a) e=0.1,4=0.2,v=0.2 (b) e=0.2,8=0,y=0.3

Figure 2: P.d.f. of the first eigenvalue ©\; : low- and higher-order approximation and

Monte-Carlo simulation with 10° realizations

simulation LI simulation ¢
higher-order —

higher-order —

N . " " N " A i N "
L 0 L 20 100 110 120 130 140 80 T0 [ ] 90 100 110 120 130 140

Figure 3: P.d.f. of the first eigenvalue 9\;:  Figure 4: P.d.f. of the first eigenvalue f\;:
higher-order approximation and Monte- higher-order approximation and Monte-
Carlo simulation, e = 0.1, ¥y = 0.1 Carlo simulation, ¢ = 0.1, 8 = 0.1

Figures 2, 3 and 4 show plots of approximated p.d.f.s of "\, resulting from the low- and
higher-order approximations given in (11) and (12). These results are compared with the
estimated p.d.f. resulting from Monte-Carlo simulation using 10® realizations for various
values of the parameters 3, ¥ and the correlation length €. From Figure 5 the dependence
of p.d.f. approximations of the first eigenvalue on the variance of the mass per unit which
is controlled by the parameter v can be assessed.
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From Tables 1 and 2 and Figure 2 it can be seen that the Monte-Carlo simulations
confirm the higher-order approximations of the moments and the p.d.f. while the low-
order approximations show significant deviations.

higher-order

low-order

0.051

0.04¢

Figure 5: P.d.f. of the first eigenvalue ;: low- and higher-order approximation,
€=02 =01und0<vy<0.3
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