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Abstract

General Sylvester and Lyapunov operators in real and complex ma-
trix spaces are studied, which include as a particular case the operators
arising in the theory of linear time-invariant descriptor systems. For
linear matrix operators an index which characterizes the operator is
introduced and determined for general linear matrix operators. The
problem of representing such an operator as a sum of elementary oper-
ators is posed and solved. The dimensions of the spaces of Lyapunov
operators are determined and the concept of symmetrised singular val-
ues of a Lyapunov operator is introduced. The application of symmet-
ric singular values to the perturbation and error analysis of Lyapunov
equations 1s discussed.
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1 Introduction and notations

Linear matrix equations and linear matrix operators have been studied, since
the pioneering work of Sylvester and Kronecker [14, 23, 22], see also [26, 18,
17] and [1). Now there are hundreds of papers, surveys and many books,
e.g., [3, 21, 2, 10, 11, 25, 7] devoted to the analysis, existence, uniqueness
and representation of the solution and also to the numerical algorithms
and software to solve various types of linear matrix equations. Most of
the existing results, however, are connected with particular classes of such
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matrix equations. In particular the problem of representing a general linear
matrix operator as a sum of elementary operators seems to be not completely
settled so far.

An important class of linear matrix equations are the Lyapunov equa-
tions. Since the fundamental work of Lyapunov on stability of motion, these
matrix equations have been widely used in stability theory of differential
equations [27], in the theory of linear-quadratic optimisation and filtering
[16], in the perturbation analysis of linear and non-linear matrix equations
[9, 6, 12, 13] and other fields of pure and applied mathematics. This has
motivated a continuous interest to both the theory and numerical treatment
of Lyapunov operators and equations [5, 24, 8, 19, 20, 4] and also recently
in the context of the analysis and numerical simulation of descriptor sys-
tems via generalized Lyapunov equations [15]. Some general properties of
finite-dimensional Lyapunov operators, however, have not been studied to
a sufficient extent. In particular, the notion of the minimal singular value
of a Lyapunov operator is sometimes misused. Introducing the new concept
of symmetric singular values of a Lyapunov operator, some well-known es-
timates in the sensitivity theory of matrix equations may be substantially
improved.

In this paper we first investigate a general class of linear matrix oper-
ators, the Sylvester operators, and introduce the index of a linear matrix
operator as the minimum number of terms in which it can be represented as
a sum of elementary Sylvester operators. We then give an explicit expression
for the index and derive a procedure for determining the representation of
a general Sylvester operator as a sum of elementary Sylvester operators.

Furthermore we study the general class of Lyapunov operators and deter-
mine the dimensions of the spaces of real and complex Lyapunov operators.
We then introduce the concept of symmetric singular values of Lyapunov
operators and show their application to the perturbation and a posteriori
error analysis of Lyapunov equations.

We use the following notation.

e 7, m — the set of integers m,m+1,,...,n, where m < n;

e R and C - the sets of real and complex numbers, 3 = /-1, Ry =
[0, 00);

e F™mXn _ the space of m x n matrices over F, F" = F"*! where F is
R or C;

- —T .
e AT, A and A" = A" - the transpose, the complex conjugate and the
complex conjugate transpose of a matrix A;

e Rg(A) and Ker(A) - the image and the kernel of the matrix A;

I, — the unit n x n matrix;



o E;j(m,n) € R™*™ - a matrix with a single non-zero entry equal to 1,
in position (¢,7);

e tr(A) and rank(A) — the trace and rank of a matrix A;

¢ ||All2 = omax(A) — the spectral norm of A, where g,,ax(A) is the max-
imum singular value of A;

e ||Allr = \/tr(AHA) ~ the Frobenius norm of A (we use the same nota-
tion for the Frobenius norm of a linear operator);

o vec[A] € F™" - the column-wise vector representation of A € Fmx";

e [i(m,n) € R™"X™" — the vec-permutation matrix such that vec[M "] =
I(m, n)vec[M], M € F™*" I, = [I(n,n);

o Q% (n) C F¥*"" _ the set of all matrices M € F™*" such that
MIl, = I, M; the set Q(n) = Q7 (n) is the subspace of all M €
anx"z’ such that M1, = I1,,M;

e A® B - the Kronecker (tensor) product of the matrices A and B;

o A(A) = {A1(A4),...,2:(A)} C C - the spectrum of A € F"*" where
the eigenvalues X;(A) of A are counted according to their algebraic
multiplicities;

o 0(A) ={01(A),...,0,(A)} C R4 — the set of singular values o,(4) >
o> 0.(A) of A € FX" gi(A) = /Ai(AHA), counted according to
their algebraic muitiplicities, where r = min{m, n};

e GL(n) C F™"*™ - the group of non-singular matrices; U(n) C GL(n) -

the group of unitary matrices; Lin” (n) ~ F™* — the space of Sylvester
operators M : FnXn — Fnxn

M[X]=Y" ALX By
k=1

where Ag, By € F™*" are given matrices, Lin(n) = Lin™(n);
g

o Mat(M) = M € F** _ the matrix representation of M € Lin” (n),
i.e., vec[M[X]] = Mvec[X] and hence

M=) B ® A
k=1

The singular values of an operator M € Lin” (n) are the singular values
oy (M) > > 0,2(M) > 0 of its matrix M and we write o;(M) = o;(M).

[T

The abbreviation “:=" stands for “equal by definition”.



2 Linear matrix operators

2.1 Basic concepts

Denote by Lin = Lin(p, m, n, ¢) the linear space of linear matrix operators
M Froon oy FPXA e, M[X] € FPX9, X € F™*". In what follows an
operator will often depend on a collection of 2r matrices

C‘—-’(Al,Bl,...,A,-,Br)GFr = (]_-pxmx}-an)r’ (1)

where Ay € FP*™ and B, € F™X4, To emphasize this dependence we
also write £(C) € Lin for the operator itself and £(C)[X] € RP*? for its
matrix value. Thus we have a family of operators {£(C)}ceg, and £ may
be considered as a mapping £ : £, x FMX" — FPXd,

A general linear matrix operator can be defined as follows. Let pg vectors
m;; € F™", 1 = l,ldots,p, j = 1,ldots, q be given. For every X € Fmxn
let M;;[X]:=m] vec[X] € F. The operator M : F™*" — FP*4, defined
from M[X]= (M;;[X])]"_,, is a linear matrix operator. The matrix M :=
Mat[M] € FPIX™" associated with M is defined via vec[L[X]] = Mvec[X]
and hence

M=[my1,...yMpiy...,Mig-- .,mp,q]T
In this formulation a linear matrix operator has no particular structure and
may be identified with its matrix M € FP9*™" according to the commutative

diagram

At the same time any linear matrix operator may be expressed directly
in terms of matrix products. In this framework the specific structure of
the operator may be revealed as an alternative to its representation as a
general pg x mn matrix. This special structure is encoded in the mapping
L(-) : ¥, — Lin.

Definition 1 The operator £(A1, B1) € Lin, such that £(Ay, By)[X] =
A X B, for X € F™*", where Ay € FP*™ and By € F"*9, is called an
elementary Sylvester operator with generating matrices (Ay, By).

The zero operator O(y.m,n,q) € Lin(p,m,n,q) and the identity operator
Lim,monny € Lin(m, m,n,n) are elementary Sylvester operators with gener-
ating matrices (Ay,0nxq) (0r (Opxm, B1)) and (Im, I,), respectively, where
Ay € FPX™ (or By € F"*9) is arbitrary.



Let » > 1 and let a matrix 2r-tuple as in (1) be given. Consider an
operator £(C') € Lin, which is represented as a sum of r non-zero elementary
Sylvester operators £(Ag, By), i.e. ,

C)[X] = Zs (Ax, Bp)[X] = Z ArX Bi, X € Fmxm, (2)
k=1 k=1

Operators of the form (2) are called Sylvester operators.

Each M € Lin may be represented in the form (2), i.e. M = £(C) for
some r and C, although this is not a trivial task as shown below.

Applying the vec operation to the expression for £(C)[X] we get

vec[L(C)[X]] = L(C)vec[X], (3)
where .
L =L(C):=Mat[L(C)] = )_ BJ ® Ay € Frixmn (4)
k=1

is the matrix associated with £(C).

Every collection C' determines a unique Sylvester operator £L(C) through
(2) but the converse is of course not true. Using the inverse of the vec
operator vec™! : FP? — FPX4 any operator M € Lin and its associated
matrix M € FPIX™" are related via

M[X] = vec Y (p, q)[Mvec[X]], X € F*",

There exist different integers r and inﬁl'litely many collections C' € %, such
that M has a representation of type (2), i.e. M = L(C), where C satisfies
the non-linear equation

r
S Bl @Ay =M. (5)
k=1
Obviously pairs (A, Bx) and (A A, e B) with Agpg = 1 give rise to the
same Sylvester operator. Another possibility to get different representations
of the same operator is when the matrix M := B,CT ® Ay of some elemen-
tary Sylvester operator £(Ag, Bi) is a linear combination of the matrices
associated with other Sylvester operators.

Example 1 Given A; € F™*™ and B; € F™*" such that

MX] = AXBi+ AX +XBy = (A + )X (Bi+ 1) — X
= AX(Bi+15L,)+XB=AX+ (A +1,)XB,
we have that the operator M := L(Ay, By, Ay, I, Iy, B) € Lin may be rep-

resented in at least three more ways L(A;+ 1, By+ 1, Iy, —1,,), L(Ay, By +
[m Ima Blv £(Ala Ina Al + Ima Bl)-



These observations lead to the problem of representing an operator M € Lin
as a sum of a minimum number of elementary Sylvester operators.

Definition 2 The minimum number £ > 1, such that the operator M €
Lin(p, m, n, q) may be represented as a sum of £ elementary Sylvester opera-
tors, is said to be the Sylvester-index of M and is denoted by ind (p, m)[M].
Any representation of M as a sum of minimum number of elementary op-
erators is called a condensed representation.

It immediately follows from the definition that a Sylvester operator is
elementary if and only it has Sylvester-index 1.

We have explicitely indicated the dependence of the Sylvester index of
M on p and m in order to have a universal definition if a general operator
M is given. Indeed, the matrix M of M is (pg x mn). Let p’, m’, n’ and
¢’ be any integers such that p'q’ = pg and m'n’ = mn. Then M may be
represented as a sum of (a minimum number) ¢ of elementary operators
from Lin(p, m,n,q) and as a sum of (minimum number) ¢ of elementary
operators from Lin(p/,m’,n’,¢’). In general ¢ # ¢’ and the index of M
depends on the representation of the dimensions pg and mn as products
of two factors. In particular ind(1,1)[M] = 1. As may be expected, the
Sylvester-index is symmetric in the sense that ind(p,m) = ind(g, n) (see
Proposition 3 below).

Definition 2 applies also to operators £(C) in the form (2) and here we
write simply ind[£(C)]. The index of £(C) in (2) is at most r but may be
much less.

Example 2 The Sylvester-index of the operator
M= E(Aa B» A» In, Imv B, Inv Im)

is at most 4, but in fact it is equal to 1, since M is in fact the elementary
operator £(A+ I, B+ 1,).

In Examples 1 and 2 some of the elementary Sylvester operators were
linear combinations of other elementary Sylvester operators in the represen-
tation (2). Such elementary operators may be removed from the representa-
tion of a general Sylvester operator according to the following proposition.

Proposition 1 Let an operator L(C) as in (2) be given. Then
ind[£(C)] < ry :=rank [vec [B,T ® Al] yo oy VEC [BrT ® Ar” . (6)

Proof. Suppose that ry < r (if ry = r there is nothing to prove,
since ind[L(C)] < r). Let Z; := vec [B]T ®A]~] and assume w.l.o.g. that



Zyy. ..y Ly, are linearly independent. Then every Zi with k& > r| may be
expressed as '

2
Ly = Z A jiZiy My € F.
J=1

Hence, for k > ry

(B,I ® Ak) vec[X] = i Ak,j (B]T ® Aj) vec[X]
=1

and
ry
AkX By =Y A\ jA; X B;.

=1
Substituting this expression in (2) we obtain
r
L(C)X]= ) axArX By,
k=1

where a 1= 371 1) Ak and hence ind[£(C)] < ry as claimed. O

It follows that we may assume that the representation (2) of a Sylvester
operator is condensed, i.e. r = ind[£(C')]. For Lyapunov operators, however,
a non-condensed but symmetric representation may also be useful.

For M € Lin we have

IMIXTlle = |lvec[M[X]}ll2 < [[M||2llvec[X]|l2 = | M|l2]| X ||

with equality holding if vec[X] is the right singular vector of the matrix M,
corresponding to its maximum singular value ||M||2. Hence, we may define
a norm in Lin as follows.

Definition 3 The (Frobenius) norm of M € Lin is defined as
IM[p := max{|IM[X]|le : [| XllF = 1} = ||M]]2.
Other norms as
[[Mllpq := max{||M[X]l, : I X1l = 1}; pg > 1

where || - ||, and || - ||, are Holder norms, may also be used. Here convenient
expressions for || - ||pq are known only for p = ¢ = 2 when M is the standard
Lyapuov operator of Sylvester-index 2, see e.g. [9, 6].



2.2 Representation of a linear matrix operator as a sum of
elementary Sylvester operators

Consider the problem of representing a general linear matrix operator M
with associated matrix M in the form (2). The dimension (real or complex)
of Lin ~ FPIX™n ~ FP™4 is ymng. In particular, for each M € FPIxXmn
there exist C' € £,, r = ind(p, m)[M], and an operator L(C) € Lin, such
that the associated matrix of £(C) is M, i.e., L(C) = M. This equation
in C, of the form (5), may be consistent or not depending on r. If it is
consistent, then it is also underdetermined and has a multi-parameter family
of solutions.

A simple solution is obtained as follows. Partition the matrix M €
FPaXmnoas M = [M;;);i=1,...,¢,5=1,...,n, where M; ; € FP*™. Then

q,n
M= 3" Eij(g,n)® M.

i,7=1
Hence, in view of (5), a possible solution for C'is
Ap =M, j, By = Ej;i(n,q), k=k(i,j) =i+ (j - 1)q,

in which there are at most ng non-zero pairs (A, Bi), i.e. the resulting
operator £(C) and hence M has Sylvester-index at most ng. A similar
argument for the transposed operator shows that ind[£(C)] < pm. Thus we
have proved the following Proposition.

Proposition 2 The Sylvester-indez of an operator M € Lin satisfies
ind(m, n)[M] < min{pm, nq}.

Using the described construction, we may calculate the Sylvster-index of
a linear operator and construct a representation of type (2) in the following
way. Suppose that M € FPIX™ is the matrix associated with M € Lin.
Partition M = [M, ;] as before and let

M* = Il(p, q) MIl(n, m) = [M ],

with M}, € Fixn for k = 1,ldots, p and € = 1, ldots, m. Introducing

—

M = [vec[My,],...,vec[Mg1], ..., vec[My ], ..., vec[My n]] € FPmx"
and

M* = [vec[Mf_l], oo vee[ My, vee MY vec[M;'n]] € Fanxpm,

we can determine the Sylvester-index of an arbitrary operator M € Lin and
construct a matrix collection C such that M = L(C).



Proposition 3 Let M be the matriz associated with M € Lin. Then
ind(p, m)[M] = ind (g, n)[M] = max{1,v(M)}

where N .
v(M) := rank[M] = rank[M*].

Proof. For a given r > 1 equation (5) may be written as a bilinear
equation

AB=M (7)
in the unknown matrices
A = [vec[Ay], vec[Ay], ..., vec[A,]] € FPmXT
vecT[B]]
T vec'[B; ] i
B = [vec[By],vec[B,),...,vec[B,]]"I(g,n) = : € Frxne,
vec [B]]

Let ©,(M) C FP™X" x F X" be the set of solutions of (7). We show
that ©,(M) # @ if and only if r > v(M) and hence equation (7) is solvable
for r = v(M). The proof is constructive and we give explicit expressions for

O, m)(M).

In the trivial case M = 0 we have r = 1 and the solution may be taken
as (A, 0) or (0, B) with max{pm, nq} free parameters. Hence ©,(0) is either
{0} x F1™ or FP™ x {0}.

Consider the general case M # 0. It follows from (7) that

v = v(M) < min{rank[A], rank[B]} < r.

We show now that if r = v, then (7) is easily solved.
If r = v = pm < nq then the solution set is

©,(M) = {(P,P~'M) : P € GL(pm)},
while for r = v =ng < mn it is

0,(M) = {(MP~',P): P € GL(nq)}.
If r = v < min{pm, nq}, then let

M 0

= H
M=USV —[ 0 0

] s M[ € G£(T')

be the singular value decomposition of M, where U € U(pm), V € U(ng).
Then the solution set of (7) is

O,(M) = {(UT [ Io) ] , [P“MI,O] v) P e Eg(r)}‘

9



Similar arguments hold true for the transposed operator with a matrix
M*, showing that ind(p, m) = ind(gq, n). Note that M=MT. O

We see that in all cases with M # 0 the solution set is ©,(M) of (7)
with » = v(M) is parametrized via the 72 free elements of the matrix P €
GL(r). Note that equation (7) is of the form m(f) = 0, where the entries
of m: 8, ~ Fripmtng) _, xpmng are second order polynomials, ie., we
have pmng scalar quadratic equations in r(pm + nq) scalar unknowns (the
elements of A and B). Hence we may expect that generically the solution
set O, (M) is an ¢-parameter family, where £ := r(pm + nq) — pmnq. Since
r—¢ = (pm—r)(ng—r) > 0, we see that in the generic case v = min{pm, nq}
this is true. In the non-generic cases v < min{pm, nq} there are in general
more free parameters in ©, (M) than the differnce between the number of
unknowns and equations.

Example 3 Consider the operator P, € Lin(n,n,n, n) acting as Pp[X] =

XT. The matrix associated with P, is Il,. Since rank[Il,] = n? we see

easily that ind(n,n){I1,] = n?. In particular we have

X" =) Eij(n,n)XEij(n,n).

1,j=1

Consider finally the case when mn = pq and the operator M is invertible,
i.e. its associated matrix M is non-singular. For some classes of invertible
operators it may be shown that ind(p, m){M] = ind (m, p)[M~1]. Whether
it is true in general is an open question.

3 Lyapunov operators

3.1 Real Lyapunov operators

An important class of linear operators are the Lyapunov operators, which
are automorphisms in F™*". In this section we consider the class of real
Lyapunov operators in Lin(n) := Lin(n, n,n, n).

Definition 4 An operator L € Lin(n) is called a real Lyapunov operator if
LT{X] = L[XT] for all X € R™". We denote by Lyap(n) C Lin(n) the
set of Lyapunov operalors.

It follows from Definition 4 that
X=XT = [[X]=LT[X]
X=-XT = L[X]=-LT[X]

provided £ € Lyap(n). Hence the subspaces of symmetric and anti-symmetric
n X n real matrices are invariant subspaces for real Lyapunov operators, see

also [4].

10



Obviously Lyap(n) is a linear subspace of Lin(n), which may be char-
acterised by the next proposition.

Proposition 4 The following statements are equivalent:

(i) £ € Lyap(n).

(ii) There exists M € Lin(n) such that £[X] = M[X]+ MT[XT] for all
X € Frn e,

L[X] = Z (AeX B+ B] X A])
k=1

or equivalently

r

Li=Mat(0) =Y (Bl ® A+ Ax® B ),
k=1

where » > 1 and Ay, By € R™ "™ are given matrices.
(iii) L € Q(n), i.e. II,L = LII,,.

Proof. The proof follows from the definitions. 0

The representation of £ € Lyap(n) as in Proposition 4(i) is not unique.
As in the case of a general Sylvester operator M € Lin(n), the Lyapunov
operator £ may be represented in a condensed form as a sum of £ := ind[(] el-
ementary linear operators but in this case the symmetry in Proposition 4(ii)
may be lost. However, for each £ € Lyap(n) there exist two integers
£y,€2 > 0, such that ¢ < ¢; + 2¢, and

fl 1?2
LIX]=) exCiXC{ + > (AxXBx + B{ XA]), e = £1.
k=1 k=1

Note that the strict inequality € < ¢, + 2¢; is possible.

Example 4 Let the operator £ be defined by the symmetric expression
LIX]=ATXA+ATX + XA

i.e., {3 = €, = 1. At the same time the Sylvester index of £ is at most 2,
since L[X]=ATX(A+ I,)+ XA. Hence £ <2 < 3 =1, +20,.

According to parts (i) and (iii) of Proposition 4 a matrix L € R™*"°

is the matrix associated with a Lyapunov operator if and only if it has the
symmetry property Il, L = LI1,, or, equivalently, L = II,, LI1,,.

11



Proposition 5 The set Q(n) of matrices associated with real Lyapunov op-
erators is isomorphic to the subspace

Ker (12 @ Il — I, ® I,z) = Ker(IT, @ [T, — L) € R™. (8)

Proof. Taking the vec operation on both sides of the characteristic equa-
tion LT[X] = L[X ") of a Lyapunov operator £ with associated matrix L
we get

vec[LT[X]] = vec[L[X T]]
M,vec[L[X]] = Lvec[X ]
I, Lvec[X] = LIl,vec[X]

and hence I, L = LI1,,. Multiplying the last equation with I, and taking
into consideration that 12 = I. we also get L = Il LII,. The characteri-
sation of Q(n) by the subspace (8) is obtained by taking the vec operation
on both sides of Tl,L — LII,, = 0, namely (I ® I, - 1, ® I2)vec[L] = 0.
0

Proposition 6 The (real) dimension of Lyap(n) is n?(n?+1)/2.

Proof. We can give the proof via (8), but an alternative proof is as
follows. The matrix equation R(L) := II,L — LIl, = 0 for L = [li;] is
equivalent to n* scalar equations of the type ri;(L) = lpg — lst = 0 for the
elements of L. The equations, corresponding to i = kn + k+1, k<n-1,
and/or j=¢fn+ €41, ¢ <n -1, arezero identities Iy — Ip; = 0 and there
are n2 of these identities. For each one of the remaining n* — n? equations
of the form l,q — 5y = 0 thereis a corresponding equation Iy — g = 0. Thus
the number of linearly independent scalar equations is (n* — n?)/2. Hence
the number of free parameters in L are nt — (n! — 22)/2 = n*(n® +1)/2 as
claimed. 0O

Example 5 For n = 2 and n = 3 the sets £(2) and Q(3) are 10- and 45-
dimensional real spaces with patterns A and Aj of the free parameters as
follows:

-

1 2 3 2 4 5 3 5 6
7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24
7

i g 2 % 10 13 8 11 14 9 12 15

Ay = 4165 71 Az=1{25 26 27 26 28 29 27 29 30
1 32 33

8 9 9 10 31 32 33 34 35 36 37 38 39

16 19 22 17 20 23 18 21 24
31 34 37 32 35 38 33 36 39
| 40 41 42 41 43 44 42 44 45

In both examples, the underlined elements are in the positions corresponding
to the zero identities in the equation R(L) = 0.

12



If M € Lin(n) is a general Sylvester operator, then according to Defini-
tion 3 we have '

IMllg = omax(M) := o1 (Mat(M)) = max{||M(X)|lr : | X||r = 1}
Similarly
Tmin(M) := 0,2 (Mat(M)) = min{||M(X)|r: || X]||r = 1}

and if M € Lin(n) is invertible, then |[M™Y|f = 1/0min(M).
For Lyapunov operators £ € Lyap(n), however, in addition to oy.x(£)
and oyin(£), we may also define the symmetrised values

LN = omax(£) == max{|IL[X]llp : [ X]lp =1, X = X7}

max

vand
Onin( L) = min{|IL[XYIr: | X]lr=1, X = XT},

and if £ is invertible, then
||‘C’_1”,l.(7 = 1/0;1in(£)‘
Obviously
Imin(£) < 0in(£) < 0fax(L) < Omax(L)-
Each of these inequalities may be strict, i.e., omin(£) < 075, (£) and 07, (L) <

Omax(L) is possible. Moreover, as we show below, the differences o7, (L) —
*

Omin(L) and opmax(L) = 0%..(L) may be arbitrarily large, see Example 7.

Let A € R™*"* and a := vec[A] € R™. The map vec : R™" — R™ is
an isomorphism and its inverse vec™! : R™ — R™™ is well defined. If we
use the notation vec™T[a] = (vec™![a])T, then it follows that the set

Z(n) := {a eR™ : vec ![a] = vec'T[a]}
is an n(n + 1)/2-dimensional subspace of R™*. Moreover, we will show that
Z(n) = Rg(l,2 + 11,,) = Rg(P,),

where ,
P, =[P,;;] € ROXmMHD/2 4 Ge {1, 0},

is an block upper-triangular matrix. The blocks P, ;; € R™*J are defined
via

Oan if 2 > j,

I.
Fri; = ' if = j,
[ O(n—i)xi ] ’

Eji(n,j) " if i<j.

13



If L is the matrix associated with the Lyapunov operator £, then we can
rewrite the expression for o in the equivalent form

*

max
orax(£) = max { | Lallz :0#£a€ Z(n)}
llall2
| L Pabll2 1)/2
= max{ L2 g p g MUY
{ “Pnb“2

= “LQn”2 = Umax(LQn),

where
Qn = Pn(PnTPn)_l = [Qn,i;] € R"zx"("+l)/2; L,j=1,...,n

is a block upper-triangular projector QrIQ. = n(n+1)/2)- The blocks
Qnij € R™J are given by Qni; = 0if i > j, Quu = [1,0,...,0]7 € R",
Qn ik = [diag(glr—1,1), 0] and Qn; = qEji(n, j)if i < j, where ¢ := 1/v2.

The matrices P, and Q, have the same sign-patterns, the only difference
being that the non-zero elements of P, are equal to 1, while the non-zero
elements of (), are equal to 1 or gq.

Example 6 The matrices Q2,Q3,Q4 are

3

1{0 0olo 0 0
0[q 0|0 0 O

0lo olq 0 0

(1)2(0) 0|q 0/0 0 O
Q2=0 0,Q3=001000
031 0{0 0[0 ¢ ©
0[0 0lg 0 ©

0olo ojo ¢ O

L 00 0{0 0 1

14



[ 170 0/0 0 0/0 0 0 O
0jg 0{0 0 0{0 0 0 0
0(0 0|l¢g 0 0/0 0 0 O
0/]0 0{0 0 0(g O 0 O
0Ol¢g 0[O0 0 0[O0 0 0 O
0f0 1{0 0 0|0 0 0 ©
0/0 0|0 ¢ 0{0 0 0 O
_ 10,0 0{0 0 0|0 ¢ 0 0O
Qa= 0,0 0f¢g 0 0[O0 0 0 0
00 0|0 ¢ 0/0 0 0 0
0/0 0/0 0 1{0 0 0 O
0/0 0{0 0 0[0 0 ¢q O
0!0 0/0 0 O[¢g 0 0 O
0/0 0[O0 0 0[O0 ¢g 00O
0,0 0{0 0 0|0 0 ¢q O
[ 0/0 0|0 0 0{0 0 0 1 |

Similarly, we have for the minimal singular value

r:)in(E) = Umin(LQn)-

a

Definition 5 The singular values of the matriz L@, are called symmetrised
singular values of £ and the set of symmetrised singular values of the Lya-
punov operator L is denoted as

o*(L) == o(LQ,).
We immediately obtain that

o (L) = o(LQn) = a(L7Qn) = 0(Q} LQy).

To compare the classical and symmetrised maximal and minimal singular
values, consider the following example.

Example 7 Let n = 2 and let

Li[X] = EnwXEy»+ EnXEy - E12XEjy — Eyy X Ey,,
LIX] = X+ LX),

where Ej; := F;;(2,2), Ly = Mat(Lx) and B > —1/2. Then we have the
associated matrices

0 0 0 0 1 0 0 0
Li=|90 P mrol 0148 - 0
0 -1 0]’ 0 -8 148 0
0 0 0 0 0 0 1
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Since 0max(£1) = 2 and L;Qy = 0, the maximum: singular value omax(8L1) =
2|8| of the operator 3L, may be arbitrarily larger than its maximum sym-
metrised singular value o7, (8£;) = 0. Furthermore we have o(Ly) =
{28+ 1,1,1,1} and since L,Q, = Q2 we obtain o*(L;) = {1,1,1}. Then
for large B the maximum singular value omax(£2) = 26 4+ 1 of L3 is arbi-
trarily larger than its maximum symmetrised singular value o, (£2) = 1.
Finally, let 3 = —1/2 + /2, where € > 0 is a small parameter. Then the
minimum singular value o, (L2) = € of L2 may be arbitrarily smaller than
its minimum symmetrised singular value, which is equal to 1.

Currently, it is not clear what the exact relationship between the set of
standard and symmetrised singular values is, but, based on several numer-
ical experiments, we conjecture that for £ € Lyap(n) and the associated
matrix L = Mat(L) we have that

o*(L) C a(L). 9)

It is also interesting to define the class of Lyapunov £ with Sylvester
index ind[£] < 2 such that

Umin([') =o, (‘C)) Uma.x(‘c) =o, (K) (10)

min max

A staightforward calculation shows that (9) holds for n = 2. As Exam-
ple 7 shows for for ind[£] > 4 it is possible thal opin(L) < o5 (L) and/or
Omax(L) > 0. (L). 1t is shown in {4] that for n = 3 and ind (£) = 2 relation
10 is not valid. The case ind[£] = 3 when, e.g.

L[IX]=AXB+B"XA" +CTXC

is also not completely analyzed yet.
If 10 holds, then for the corresponding Lyapunov operators that are most
used in practice, i.e., for

L X]=ATXE+E XA, Ly[X]=ATXA-E'XE

it is justified to use the minimum singular value instead of the minimum
symmetrised singular value, since they would be equal. Of course, for general
Lyapunov operators one must use the symmetrised singular values.

Note that if (9) holds, then it is not necessarily true that £ € Lyap(n),
as is demonstrated in the following example.

Example 8 Let

(=R R )
SN = O
= o oo

then o(MQ,) = {V10,1,1} C o(M) = {V/10,1, 1,0}, but M ¢ Q(2).
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3.2 Complex Lyapuriov operators

The above results for real I yapunov operators can be extended to Lyapunov
operator in complex linear spaces as we demonstrate now. In this section
the superscnpt ¢ means that the corresponding linear space is over C. In
particular Lin(n) is the space of linear matrix opertors C"X" — CnXn,

An operator M € Lin®(n) is represented in the form (2), where Ay, By, €
C™*™. Definition 3 is directly applicable to such operators and Proposition 3
holds as well. Definition 4 is modified as follows:

Definition 6 The operator £ € Lin€(n) is said to be a Lyapunov operator
if LX) = L[XY] for X € cr¥n,

In the complex case, due to the non-linearity of the complex conjugation,
‘the set Lyap©(n n) C Lin® in) of Lyapunov operators is not a subspace of
Lin®(n) and the set Qf(n) C C¥**"* is not a subspace of C"* X"’ (these sets
become subspaces if we consider linear spaces of complex matrices with R
as a field of scalars or if we pass to the representation ¢ *"* ~ R2"2"2"2).

We obtain the following; modification of Proposition 4.

Proposition 7 The following statements are equivalent:

(i) £ € Lyap®(n).

(ii) There ezists M € Lin®(n) such that L[X] = M[X]+ MYU[XH] for
X €C™m je.,

r

LX) =Y (AkXBi + B X 4})
k=1

and
r

Li=Mat(£) = 3" (Bl ® Ac+ A @ BY)
k=1

where r > 1 and Ay, By € C™*" are given matrices.
(ili) L € Q°(n), i.e., L = 1,
If we represent L as L = Lo + jL,, where Lo, L, € R”2x"2, then Propo-
sition 7(iii) yields
Loll, —II,Lo =0 (11)
L]Hn+HnL1 = 0. (12)

Hence we come to the following analogues of Propositions 5 and 6.
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Proposition 8 The set Q¢(n) of matrices associated with complez Lya-
punov operators is isomorphic to the subspace

Ker(diag(U_(n), Uy (n))) = Ker(diag(V_(n), V4(n))) C R*™,
where
Us(n) =L @M, £, @ 12, Vi(n) =1, @I, £ L.

Proof. The proof follows directly from (11) and (12). O

Proposition 9 The real dimension of Lyap® (2) ~ Q€(n) is n*.

Proof. Based on equation (11) we have n?(n?+1)/2 free (real) parameters
in the matrix Lo according to Proposition 8. The number of free parameters
in L; is obtained as follows. Equation (12) for the matrix L, is equivalent
to n* scalar equations Iy, + l5; = 0 for its elements [;;. In the n? positions
of the zero identities in equation (11) (see the proof of Proposition 4) the
corresponding scalar equations in (12) are of the form 2[,, = 0 and are
linearly independent. For each of the remaining n* — n? equations lpg+ s =
0, there is an equivalent equation Iy + {,; = 0. Thus the number of linearly
independent scalar equations in (12) is n? + (n? — n?)/2 = (n* + n?)/2 and
the number of free elements in L; becomes n? — (n* 4+ n?)/2 = n?(n? —1)/2.
Adding this number to the number n?(n? 4 1)/2 of free elements in Lo we
obtain that the number of free real scalars in L is n* as claimed. O

The maximum and minimum symmetrised singular values of the operator
L € Lyap®(n) are defined as

Thax(L) = max{|IL[X]lle : [ X]lp =1, X = X"}, (13)
rin(£) = min{[C[X)F: 1XJle = 1, X = X"}, (14)
respectively.

The symmetrised singular values for a complex Lyapunov operator £
with matrix L = Lo + jL1, L; € R"*™, are determined as follows. Let
X = Xo+ 3X1, X; € R™™™. Then the restriction X = XH in (13) gives
XJ = Xg, XlT = —X,. Hence we may take Xo = Yp + YOT, X =Y - YIT,
where the matrices Y; € R®*™ are arbitrary. Thus

vec[Xo] € Z(n)=Rg(l,2 +11,),
vec[X ] € Z'(n):=Rg(lz — ),

where Z'(n) is an n(n — 1)/2-dimensional subspace of R, As in the real
case, we get

Ur’:\ax([') = ”Zﬂ”2

18



where

LlQn LOQn

n -
The matrix Qn € R xn(n-1)/2 i5 obtained from (Qn by deleting the columns
contained ones which are numbered as k(k + 1)/2, k = 1,...,n, and by
changing the sign of each second element ¢ in each column of the reduced
matrix. Formally this procedure is described as follows. Let

A, = (An)u = [5i(i+l)/2,j] (= ’]2"("1"'1)/2)“1("_l)/2

Z . [ LOQn "‘Llén ] € R2n2><n.

where 4;; is the Kronecker 4, and
Ji={(kn+Lk(k-1)/2+1):k=1,...,n—1,1=1,ldots, k}.

Then
A Y.L (QnAn)ij if ('L,]) ¢ J
(@n)is = { —(QnAy); if (i,5) € J

Definition 7 The symmetrised singular values of the complex Lyapunov
operator L with associated matriz L are the singular values of L, :

o*(L) := o(L,).

A similar conjecture as in the real case can be stated for complex Lya-
punov operators L.

So far we have made some formal analysis of generalized Sylvester and
Lyapunov operators. In the following section, we discuss the application of
these formal results to the sensitivity and perturbation analysis of Lyapunov
equations.

4 Sensitivity and perturbation analysis of Lyapunov
equations

Consider the Hermitian Lyapunov equation

LIX]=Q, Q"=Q#0 (15)

with an invertible Lyapunov operator £. The minimum symmetrised sin-
gular value o (L) of L is a relevant measure for the sensitivity of the
Lyapunov equation (15) relative to perturbations in the coefficient matrices
of £ and Hermitian perturbations AQ = AQY in the matrix Q.

Denote by P = P = £~1[Q] the solution of (15) and let X = P+ AP
be the solution to the perturbed Lyapunov equation £(X) = Q + AQ. We
have AP = £L~1[AQ] and hence

. _
IAPlF < (1€ IFIAQIR o D) IAQ]Ip-
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In terms of relative perturbations it is fulfilled vhat

1 |Qll
ép < K*8g, K"
P o) Pl
where 8z := ||AZ||¢/||Z]lr and k* is the relative condition number of the

Lyapunov equation (15) with respect to Hermitian perturbations in Q. Note
that usually Q = CHC and if the matrix C is perturbed then the perturba-
tion AQ = ACHC + CHAC + ACHAC in Q is Hermitian.

Most of the perturbation bounds in the literature [9, 6] are based on
Omin(L) instead on o7, (L), e.g. the condition number is taken as k :=
NQIIF/ (1 PllFomin(L)). Since k > k+ may be much larger than &%, it is clear
that in case of Hermitian perturbations one should use the relevant sensitiv-
ity estimates based on symmetrised singular values instead on usual singular
values of Lyapunov operators. At the same time sensitivity estimates, based
on the usual singular values, should be used in case of non-Hermitian per-
turbations.

Consider now the a posteriori error analysis of equation (15). Sup-
pose that P is an approximate solution of equation (15), e.g. the solution
produced by a numerical method in floating-point computing environment.
Then it is important to have a sharp computable bound on the actual rela-
tive error .

o IP=Ple
d I Plle

Such a tight bound may be derived using the symmetrised singular values of
£ and in particular the symmetrised relative condition number of £, defined
below.
Denote Q := L[P). We have L{P - P] = ( — Q which gives P-P=
Q- Q] and

IIQ Qllr
p-pP 16
1P - Pl < o (16)
Since ||QllF < onax(£)||Pllr we have
1 U:na.x(ﬁ)
. 17
PTe = “lQlle ()
Combining (16) and (17) we get the desired estimate
IQ - Qlir
5 < cond;(£ =,
SR 7 Y
where . (L)
* — T max
cond; (L) = —_———U:nin(‘c)

is the symmetrised relative condition number of £ with respect to inversion.
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