TECHNISCHE UNIVERSITAT
CHEMNITZ

On the Corona Theorem

for Almost Periodic Functions

A. Bottcher

Preprint 98-8

Fakultat far Mathematik



ON THE CORONA THEOREM FOR
ALMOST PERIODIC FUNCTIONS

A. Bottcher

Let AP#(R"™) denote the Banach algebra of all continuous almost periodic functions on R”
whose Bohr-Fourier spectrum is contained in an additive semi-group X C [0, 00)". We show
that the maximal ideal space of AP#(R") may have a nonempty corona and we characterize
all ¥ for which the corona is empty. Analogous results are established for algebras of almost
periodic functions with absolutely convergent Fourler series.

1. Introduction

Recent work on the factorization of almost periodic matrix functions (and thus on the
solution of convolution integral equations over finite intervals) has resulted in a revival of
the interest in corona theorems for almost periodic functions; see (3], [4], [5], [6], [17], [18].
The general problem is as follows: given analytic almost periodic functions fi,..., f,, in
the upper half-plane C, such that '

m

inf fi(z)] >0,
2 D)
are there analytic almost periodic functions g1, --.,9m such that

H(2)gi(z)+ -+ fm(2)gm(2) =1 for all z € C,?

The answer to this problem is yes, and as far as the author knows, it was Xia [21] who was
the first to state this explicitly.

Now suppose that, in addition, the Bohr-Fourier spectraof fy,..., f,, are all contained in
some additive semi-subgroup ¥ of [0, c0). Does the above problem have a solution gy, ..., g
such that the Bohr-Fourier spectra of ¢, . .. , gm are also contained in ¥ ? The results along
these lines the author is aware of all concern the case where X is the intersection of some
additive group G C R with [0, 00), and in this case the answer to the question 1s again yes
(Rodman and Spitkovsky [18]). We will show that in the case of arbitrary semi-groups ¥
the answer may nevertheless be no. This happens, for instance, if £ C [0, 00) is given by

S={k+1v2: (k1) € 22},
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Moreover, we will characterize all £ for which the answer is in the affirmative.

The proofs of [18] and [21] make use of Carleson’s corona theorem [7] in its full strength.
This theorem says that for every m > 1 and every ¢ > 0 there exists a constant C(m, €) < 00

such that if fi,..., fn are bounded analytic functions in C, satisfying
sup |fi(2)| <1, inf 3 |fi(2)] >,
2€C+ ZEC"' ]:1

then there exist bounded analytic functions g,..., g, in C4 such that

SUCP 19;(2)] < C(m,e), Y fi(2)g;(z) =1 for z € C,
ey j=1

(see also [8] and [15])

We here proceed in a different way. We compute the maximal ideal spaces of the
relevant algebras and then look whether Cj is a dense subset of the maximal ideal space.
Note that the maximal ideal spaces of Banach algebras of almost periodic functions are in
principle known since Arens and Singer’s 1956 paper [2] and that they are much simpler
than the maximal ideal space of H*. Moreover, the approach pursued here does not have
any recourse to Carleson’s corona theorem and it allows us to establish corona theorems

for almost periodic functions on R™.

The paper is organized as follows. Section 2 contains the preliminaries, in Section 3
we determine the maximal ideal spaces, and Section 4 is devoted to the problem whether
C?% is dense in the maximal ideal space. Section 5 contains a few remarks on the role of
corona theorems in connection with the factorization of almost periodic matrix functions.
Part of the results of this paper are not at all new, but several things are made explicit and
the paper is a reasonably self-contained exposition of corona theorems for almost periodic
functions on R™ without too many accessories from abstract harmonic analysis.

2. Basic definitions

For A € R", define ey : R® — C by ej(z) = ™) where (\,z) = Mzy + ... + Az
We denote by AP°(R") the set of all almost periodic polynomials, that is, the set of all
functions of the form ¥ cq ayex where a) € C and H is a finite subset of R™. Let AP(R")
stand for the closure of AP°(R™) in L°(R"). For every a € AP(R"), the Bohr mean-value

1
= 1i / d
e @) Jirrp a(z) dz,

exists and is finite. The set
0(a) := {A € R" : M(ae_,) # 0}
is called the Bohr-Fourier spectrum of a. The set {}(a) is at most countable and the series

Z M(ae_,\)e,\

A€Q(a)



is referred to as the Fourier series of a. We let APW(R") denote the set of all ¢ € AP(R™)
with absolutely convergent Fourier series:

a € APW(R") <= |la|]lw := ) [M(ae_,)| < co.
A€ (a)

Note that AP(R") is a C"~subalgebra of L>*(R") and that APW(R") is a Banach algebra

with pointwise operations and the norm || - ||w.

Given any subset ¥ of R™, we put
APY(R") := {a € AP°(R") : Q(a) C T}.

Let APg(R") and APWg(R") be the closures of APS(R™) in AP(R") and APW(R"),
respectively. Using the Bochner-Fejér operators (see, e.g., [16, Chap. 1, Sec. 2.3]), one can
show that

APy(R") = {a € AP(R™): Q(a) C T},
APWg(R") = {a € APW(R"): (a) C £}.
The sets APg(R") and APWg(R") are closed subalgebras of AP(R") and APW(R™),

respectively, if and only if ¥ is an additive semi-group, i.e., if and only if A, x € ¥ implies
that A+ p € X.

Let Cy :={z+iy:z € R,y € (0,00)}. If & C [0,00)", then every function a in
APz (R™) can be extended to an analytic function in C7 via the Poisson integral,

e (M=)
a(z) = — a(ty,..., ty)dty,...dt,,
)= 2 Jre g(zj—tj)2+yf (t )d;
where z = (2, +iy1,...,z, +1y,) € C}. Obviously,
sup la(z)] < [lalle  (:= sup |a(t)]). (1)
zeC} teRn

Throughout what follows we suppose that ¥ is an additive semi-group contained in
[0,00)" and that 0 € . To emphasize this convention, we henceforth write

AP#(R") := APg(R"), APW¢(R") := APWg(R").
Clearly, AP#(R") and APWg(R") are unital commutative Banach algebras (with the
norms || - || and || - |lw, respectively). We tacitly identify functions in AP (R™) and
APW(R™) with their analytic extension into Cr.
3. Maximal ideal spaces
Let G C R" be the smallest additive group containing the semi-group ¥,

G=X-Y:={A—p:\puel}
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and denote by G’g the Bohr compactification of G. Thus, Gp is the set of all maps x of G
into the complex unit circle T such that x(A + p) = x(A)x(r) for all A\, u € G.

The maximal ideal spaces of the algebras AP;(R") and APWg(R") can be identified
with G in the following sense: ¢ is a nonzero multiplicative linear functional if and only
if there is a x € G'g such that ¢ = ¢, where

goX(Za,\e,\) =) axx(A) for 3 ajer € APS(R")
) ) A
(see [9], [10], [16], for example). In short:
M(APs(R™)) = M(APWg(R™)) = Gp.

We now return to the semi-group ¥ C [0,00)". We denote by Yy the set of all maps
0: % — [0,00] such that

0(0) =0 and (X + pu) = 6()) + 6(p) for all A\, u€ 2. (2)
Here, of course, v 4 0o := oo for all v € [0, 00]. Given § € Yy, we put
Lo:={A€X:0()) < oo}, (3)

we denote by G? the smallest additive subgroup of R™ containing £g, and we let GY stand
for the Bohr compactification of G?:

Ge = Eg bt 29, G% = (GO)B. (4)

Theorem 3.1 (Arens and Singer). The mazimal ideal spaces of both APZ(R") and
APWZE(R™) can be identified with

Mz = |J (G x {6})

06?2

in the following sense: ¢ is a nonzero multiplicative linear functional if and only if there
are 0 € Yy and x € GY such that p = ¢, 4 where

Qox’g( > a,\e,\) =y axx(A)e ™ (5)

AEXD AEL,

for Tyex aren € APR(R™).

This result is contained in Theorem 4.1 of [2]. For the readers convenience, we give the
proof below. We first make a few remarks and consider some illustrative examples.

Every x € G% can be extended (not necessarily in a unique way) to a x € Gp; see, e.g.,
[11, Lemma 24.4]. Thus, Theorem 3.1 implies that

MECGBXVE
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in the following sense: every nonzero multiplicative linear functional ¢ is of the form Y =
®x.6 Where x € Gp, 0 € Yy, and

‘Px,o( E a,\e,\) = Z an(,\)e—G(A) for Z aey € APS(R")
A€ET A€ AEX

Notice that the values of x on ¥\ 29 are irrelevant because e’ = ¢=° — 0 for A ¢ © \ Xs.

Let Yy be the set of all § € Yy which do not assume the value oo. Thus, Yy is the set
of all maps 6 : £ — [0, c0) satisfying (2). We denote both the 8 € Y given by 6(}) := oo
for all A € ¥\ {0} and the ¢ € My defined by @(2axer) := ag simply by co. If 0 € Yi,
then ¥y = ¥ and G? = G. Hence, in case Yy = Y5 U {00}, we have

Ms = (GB X Yz) U {OO} (6)
Example 3.2. If H is an additive subgroup of R™ and
%= Hn ({0}u(o, %)),

then Y5 = Y3 U {co} and therefore (6) holds. Indeed, suppose 6 € Vs and f(u) < oo for
some pt = (p1,...,42) € £\ {0}. Let A = (A1,...,A,) be an arbitrary point of £. Since
p; > 0 for all 7, there is a natural number k such that kp; > A; forall 5. Asku— X e If
and ky — A € (0,00)", it follows that ki — A € E. Therefore 8()\) + 0(ky — A) = kO(u), and
because (1) < oo, we see that () < oco.

Taking n = 1, we obtain in particular that if H is an additive subgroup of R and
% = HN[0,00), then Yy = Yz U {00} and My is of the form (6). m

Example 3.3. It is well known that § € Yj0,00) if and only if there is a y € [0, 00) such that
0(\) = Ay for A € [0, 00)

(this is an 1880 result of Darboux; see [1, p. 45]). Using this result, it is easy to show that
9 € Yjo,c0)m if and only if there exists a y € [0,00)™ such that

0(X) = (M\,y) for X €[0,00)™.

Thus, we can identify Yjg o)m and [0,00)™ in a natural way.

Let now n = 1 and ¥ = [0,00). Then, by Example 3.2 and by what was said in the
previous paragraph, Yy = [0,00) U {oo} and hence,

Mooy = (R x [0,00)) U {co}.

We may think of Rp x [0, 00) as a “disk” whose center was deleted and may interprete {oo}
as the center of this “disk”. m

Example 3.4. Let n = 2 and ¥ = [0, 00)%. Employing the argument of Example 3.2 it is
not difficult to show that

7[()'00)2 = YEO,oo)"’ U (Y[O,oo) X {OO}) U ({OO} X Y[O,oo)) U {OO}

5



where Yjpo0) X {00} is the set of all § of the form

Bi(M) if A =0
o0 if /\2>0

8(A, As) = {

with some 0, € Y{o o) and where {oo} X Yjg0) is defined similarly. From Example 3.3
we therefore deduce that Yo )2 can be identified with [0,00]? in the following sense: 6 €
7[0'00)2 if and only if there is a (y1,y2) € [0,00)? such that

0(A1,A2) = My + Azye
or if there is a y; € [0,00) such that

for Ay =

B _ )] A
0(A1, A2) = My + Ago0 1= { oo for Ay >0

or if there is a y; € [0,00) such that

A for A\ =0
0(’\la/\2):/\100+/\2y2 ;:{ O;yz fZ:- /\1>0

or if @ = oo, that is,
0(A1, A2) = X100 + Az00 1= o0.
Accordingly, Theorem 3.1 gives

M[O,oo)7 = ((R2)B X [0,00)2) U ([0,00) X RB) U (RB X [0,00)) U {OO} (7)

Let T:={z€ C:|z| =1}, D:={z € C:|z| <1}, D.:= D\ {0}. In a sense, (7) is the

analogue of the decomposition
DxD = (—Ii U {0}) X (ﬁ,. U {0})
= (D.xD.)u (D.x {0})u ({0} xD.) u{(0,0)}
(T2 x (0,1]2) U (T x (0,1}) U ((0,1] x T) U{(0,0)}. m

iR

Example 3.5. Let Z, := {0,1,2,...} and let Q, stand for the nonnegative rational
numbers. It is easily seen that if ¥ = Z7 or ¥ = QF, then

Yy = [0,00)™

in the sense that 8 € Yy if and only if there is a y € [0,00)™ such that 8()) = (A, y) for all
) € ¥. The set Yy can be identified with {0, 00]™ as in Example 3.4. =

Example 3.6. Let n =1 and & = {k +{v/2: (k,1) € Z1}. If 6 € Yz then

0(k + 1V/2) = k6(1) + 10(v/2) =: kmy + Ins (8)



with (n1,72) € [0,00)%. Conversely, for every (n,,n,) € [0,00)? the map 6 given by (8)
belongs to Yx. The inclusion Yz C [0, 00) would mean that there is a y € [0, 00) such that

kmy + In; = (k 4+ 1V2)y for all (k1) € Z2.

This is impossible for n, # v/2n;, and hence Yz contains [0, o) properly. Consequently, Vs
i1s all the more much bigger than [0, oo).

Note that for every 7,7, € [0,00) the maps 8, and 6, given by

kg for [=0 lny for k=0
01(k+l\/§):={ogl for [>1° 92(’““‘/5)::{022 for k51

belong to Yz \ Yz. m
Proof of Theorem 3.1. Put Ao := APF(R™) and A, := APWg(R™). It is obvious that Oy

is a nonzero multiplicative linear functional on A,. To prove that ©x,0 1s a multiplicative
linear functional on Ay, it suffices to prove that ¢, 4 is bounded. The boundedness of D0
will follow once we have shown that

lox.0(a)| < 2|la)loo for all a € APS(R”). (9)
Solet a = 327 ay ex, € APY(R™). Put
N - N (V)
a = <Za)\16,\]) = Z a/\k (S
1=1 Ak€Fy

It is easily seen that the number |Fy| of elements in Fy is at most (N 4+ 1)™'. Hence
|FN]'YN — 1 as N — oo. Since ¢, has norm 1 on A, we get

1/N
1/N N
[exol@)] = loxa(@")™ < Y = (5 1a))

A€EFN
1/(2N) 1/(2N)
N N
<o ( 5 1a0R) T <2 X 1)
A€FN AkEFN

if only N is large enough. Parseval’s equality says that

S e = [ a0 Pdu(x)

A€EFN (R")B
where du is the normalized Haar measure on (R")g. Hence,
aN 1/(2N)
exs@i<2( [ 1a00PYau()) < 2l
(R") g
which is (9).
Conversely, let ¢ be a nonzero multiplicative linear functional on Ay or A,. Since

lo(ex)] < lleall = 1, it follows that |p(ey)| = ™ with @ € V5. Define £5 and G? by
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(3) and (4). The map 6 admits a unique extension f: G* = R from T4 to GY such that
O + 1) = 0(X) + 0(p) for all A, pu € G%

O(A — ) = 0(X) — () for A, € Ty
(note that @ is finite on Lg). There is also a unique extension of the map
{eahres, = C\ {0}, ex > (en)

to a map @ : {€x}rege = C \ {0} such that

Plexn) = P(ex)p(e,) forall A pe G,
namely

Bler-u) = plex) (wlen) " for Ap € o
(recall that |¢(e,)| > 0 for u € £y). For A € G, put

X(3) = Vg(ey).

Then |x(A)] = 1 and x(A + p) = x(A)x(u) for all A\, u € G?, whence x € G%. Since

_ xN)et for A€ %,
‘P(e/\)_{e—WZO for Ae X\ X

and ¢ is a multiplicative linear functional, it results that ¢ is of the form (5). m

4. The corona theorem

Let ¥ be an additive semi-subgroup of [0, oo)'" and suppose 0 € ¥. The map
7:R™ x (0,00)" = C%, (z,y) = (21 +1y1, ..., ZTn + iYn)
identifies R™ x (0,00)" and C7. For z € R" and y € (0,00)", we define
Pry t APS(R™) = C, Y ajer = Y a3~ (), (10)

Since _ '
%:,y(Z a,\e,\) — Z a/\et(,\,xhy), (11)

we see that ¢, (a) is the value of the analytic extension of a at z + 1y € C}. From (10)

we get
cpr,y(za,\e,\)i <D lasl = llallw,

which shows that ¢, , extends to a nonzero multiplicative functional on APWg(R™). Tak-
ing into account (1) and (11), we conclude that ¢, , also extends to a nonzero multplicative
functional on APg(R™). Thus, we have a map

o :R" x (0,00)" = My, (z,y) = @z 4
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In general, o is not injective.

Example 4.1. Let & = Z, := {0,1,2,...}. We have ¢,,,, = ¢s,, il and ounly if
e = ¢T2e7ME for al] A € Z,,

which happens if and only if y; = y; and z, — z; € 27Z. Thus, o is not injective. On the
other hand, if £ = [0, 00), then o is clearly injective. m

The map o7~! : C} — My sends each point of C? to a maximal ideal of AP#(R™) and
APW¢(R™). If o is injective, this is an embedding of C? into the maximal ideal space M.
In case o is not injective, we think of C7} as being contained in My in “rolled up” form. In
what follows, when saying that C7 is dense in My we always mean that o7~ }(C") is dense
in Mz (in the Gelfand topology).

We begin with a standard result, which relates the problem formulated in Section 1 to
the density of C% in My. The proof is also standard (see, e.g., [15]) and is only given for
the reader’s convenience.

Proposition 4.2. The following are equivalent:
(i) for every fi,..., f € APE(R") (resp. APWZ(R")) satisfying

inf S 1fi() >0 (12)

+ j=1
there exist gy,...,gm € APF(R™) (resp. APW(R")) such that

flgl l ---fmgm 1' (13)
+

Proof. (i) = (ii). Let ¢ € My and suppose ¢ is not in the closure of ot~ '(C%). Then
there exist hy,...,hn € APR(R") and € > 0 such that for each (z,y) € R™ x (0, c0)"
at least one of the inequalities |¢zy(h;) — p(h;)| > € is satisfied. Put fy := hi — o(hs).
Then fi € APR(R") and for each (z,y) € R™ x (0,00)" there is a j such that | f;(z + iy)| =
lozy(hj)—@(h;)| > €. Hence, by (i), we can find g1, ..., gm € APF(R") (resp. APW;(R™))
such that 3= frgr = 1. It follows that 3 o(fi)e(gx) = 1, which is impossible because
©(fe) =0 for all .

(ii) = (i). Let A stand for AP$(R"™) or APWg(R"). Assume there are f,,..., fn € A
satisfying (12) but that there are no gi,...,gn € A such that (13) holds. Then the set
{2 fig; : g; € A} is a proper ideal of A and therefore contained in some maximal ideal.
Consequently, there exists a ¢ € My such that ¢(f;) = 0 for all j = 1,...,m. Since
or~!(C}) is dense in My, there are (zn,yn) € R™ x (0, 00)" such that [o(f;) = @r,.un(fi)] <
1/n for all j. It results that |f;(zn + iyn)| = |@zn4n(fi)| < 1/n for all j, which contradicts
(12). m



Forae_[(),oo), wedeﬁnea—i—oo-:ﬁ: oo,a-00:=c0ifa#0and a-00:=0if a =0.
We write Yy C [0,00]™ if every 8 € Yy is of the form 6(A) = (A, y) for some y € [0, c0]".
Note that if, for example, n = 4 and y = (y1, 00, ¥3,00), then 8(A) = (A, y) is given by

0(ar, g, a3,04) = ay1 + az00 + azys + a400
. o0 if a; >0 or a4 >0,
o oy + azys  if ay; = a4 = 0.

Iere is our main result.
Theorem 4.3. The set C} is dense in Mx if and only if Yz C [0, co]™.
Before giving the proof, we discuss a few examples.

Example 4.4. Let Z, := {0,1,2,...} and let Q4 be the set of the nonnegative rational
numbers. If

¥ =[0,00)" or E=Q} or ¥ =17}, (14)

then Yy = [0,00]" (recall Examples 3.3 to 3.5). Thus, in the cases (14) we deduce from
Theorem 4.3 that C7 is dense in My. For ¥ = [0,00), this was already proved by Xia
[21], for & = Q4 and ¥ = Z,, the density of C, in My was established by Rodman and
Spitkovsky [18]. m

Example 4.5. Let n = 2 and ¥ = {(k,k) : k € Z;}. Clearly, 6 € Yy if and only if there
is a y € [0,00) such that

6(k,k) = k6(1,1) = ky for all k € Z,.

We can write
0k, k) = k(y/2) + k(y/2) = ((k, k), (y/2,/2))
and accordingly,

Y = {(y1,92) € [0,00]" : y1 = 1} (15)

We can also write

0(k, k) = k(y/3) + k(2y/3) = ((k, k), (u/3,2y/3))

and thus,
Vs = {(y1,42) € [0,00]" : 251 = 1 }-
Evidently, there infinitely many other possibilities of representing Ys. In any case, Yy is a
subset of {0, 00]* and hence C?% is dense in My by virtue of Theorem 4.3.
In the situation considered here, the density of C% in My can be easily understood.
Indeed, we have ¢ € or7!1(C2) if and only if ¢ = @(z,.2:),(1.32) With (z1,22) € R? and
(y1,y2) € (0,00). Because

‘P(r,,xz),(yl,yz)(e(k,k)) — eik(r1+zz)e—k(y|+y2)

b
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we see that
o7 (CY) = {tzy 1 2 € [0,27),y € (0,00)}

where ¥, y(e(k.k)) 1= €*®e~*. Consequently, or~}(C3) may be identified with T x (0, co).

Taking the representation (15) of Yy, we can identify Yz with [0, co] = [0, co)U {o0}. Since
G:=Y-Y=A{k(l,)}rez = Z
and Zg = T, we deduce from Theorem 3.1 that
My = (T x [0,00)) U {oo}. (16)
Clearly, one expects that T x (0, 00) is dense in (16). m

Example 4.6. Let ¥ = {k+1v/2: (k,l) € Z%} be as in Example 3.6. Since Yy is not
contained in [0, oo}, Theorem 4.3 implies that C, is not dense in Ms.

Let us again try to understand the case at hand in a direct way. By Theorem 3.1,
Gpg % Yg C Ms.

Since G is dense in Gg and G C R, one can show that C; = R x (0,00) is dense in
G x [0,00), but as Yy is much bigger than [0, 00), one cannot expect that Gp x [0, 00) is
dense in Gg x Ys.

To be more specific, notice first that in the present situation
G:=%-%={k+IV2: (k1) e Z?.
Hence Gg = T?, where (e, e"?) € T? is identified with the character
Xovm (k + 1V/3) 1= et gilea,

Thus, we can write

GBXY2§T2XYE.

Why is C4 = R x (0,00) not dense in T? x Yz 7 One might think this is due to the fact
that R is not dense in T?. However, R is dense in T?. Indeed, the density of R in T2
is equivalent to the following: given (e"!,€*2) € T? ¢ > 0, and rationally independent
ki +1;v/2 € G (j =1,...,m), there exists an z € R such that

Ieik]xleil]xg _ ei(k,+lJ\/§)z

< ¢ for all j.

But by Kronecker’s theorem (see, e.g., [12, Chapter 2|), the image of the map

R T7, oo (etive | cilhmtiny/De)

is dense in T™ and hence comes as closely as desired to the point

(ei(k1r1+llrg), o ,ei(kmrl-{-lmz;;)) .
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Thus, R is dense in T?. In contrast to this, the density of [0,00) in Yy is equivalent to the
following: given (mi,m2) € [0,00)% € > 0, and k; + ;v2 € G (j =1,...,m), there exists a
y € R such that

|e_(k”“+"”2) - e_(k’“’ﬁ)yl < e forall j

This can be shown to be impossible in general. In summary, C is not dense in My, because
[0,00) is not dense in Y. m

Proof of Theorem 4.3. Suppose Ys C [0, 00]" and pick (x,0) € G® x Yy (Theorem 3.1).
We must show that if we are given fi,..., fm € APX(R") and € > 0, then there is a point
(z,y) € R™ x [0,00)" such that

loxo(fi) = @ey(fi)l <€ for j=1,...,m. (17)

Write f; = ¥ [ en.
Let £, G° be given by (3), (4). For z € G?, define x, € G by xz(A) := A=) (X e GY).
Since GY is dense in G%, there is an z € G® C R™ such that

o) — pxel) € T PN = x=(N] < 5. (18)

AEXLg

We write the points A € ¥ in the form A = (ay,...,a,). Since Yy C [0,00], there is a
y° = (% ...,30) € [0,00]" such that O(}) = (), y°). Let K :={k € {1,...,n}: yg = oo}
Clearly,

Se = {(a1,...,az) :ax =0 forall k€ K}. (19)

For every y € (0,00)", we have

] 1 x — Q
oro(fi) = 3 fOelmem il

AEXg
cpx,y(‘fj) = Z f/{i)e"(’\ﬂ)e—(/\,y)_*_ Z fi])ei(/\,x)e—(A’y).
A€ELp AET\ X

Choosing ¥y = (y1,...,Yn) € (0,00)" so that y, is sufficiently large if yf = oo, yx is suf-
ficiently small if ¥® = 0, and y = y? if y € (0,00), we can by virtue of (19) guarantee

that
S YRl <2 3 et - e < 2
/\EE\EQ 4 AELy 4
Hence,
loxa0(f5) — woy(fi)l < €/2. (20)

Adding (19) and (20) we arrive at (18).

Conversely, suppose now that o7~!(C%) is dense in Mg. Define xo on G := L — % by
xo(A) = 1 for all A € G. Pick any 0 € Ys. By Theorem 3.1, ¢,,,9 € Mz. The density of
or'(C) in My implies that if we are given any Ar,...,Am € X and any € > 0, we can
find (z,y) € R™ x (0,00)" such that

I@Xovg(e,\") — cpz,y(e,\J)l < ¢ for _] = 1,. .., M.
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Equivalently, :
Ie-a(x,) _ e'(’\"”)e"(’\"y)l <egfor y=1,...,m.

Passage to real and imaginary parts gives

e~ — cos();, z)e" M| < e, |[sin(Xj,z)e PV < ¢
E i

I

and adding the squares of these inequalities we obtain
e™ M) _ 9 cos();, 2)e e (W) 4 om2(03) < 9.2,
Since —cos(A;,z) > —1, it results that

le-—ﬂ(/\J) _ e‘(/\Jyy)' < \/55 for ] = 1,, .o,Mm.

Suppose n = 1. We have proved that for every A\;, A; € & and every natural number N
there exists a yv = yn(A1, A2) € (0,00) such that

1 .
Ie—o(x,) _ e—A,w] <¥ for j =1,2.

Hence Ajyny — 0();) as N — co. Assume ¥ contains a nonzero point A;. Then

(A1)
Yn — A

=:y € [0,00] as N - oo

and therefore 6();) = Ayy. As A\, € ¥ was arbitrary, we arrive at the conclusion that
0 € [0,00]. If ¥ = {0}, then Yy is the singleton consisting of the zero map and hence
Yy C [0,00]. At this point the proof is complete for n = 1.

Now let n = 2. Suppose first that there are A\; = (01,B1) and A, = (ay,B;) in ¥ such
that

det ( « g; ) £ 0. (21)

129
We know that if A3 = (a3, 33) is an arbitrary point in & and N is any natural number, then
there are y5, y% € (0, 00) such that
|70 — B | < L for j=1,2,3,
N

whence

ajyy + Biyn = 0(X;) as N = o0 (7 =1,2,3). (22)
Taking into account (21), we get

) -1
Un ar By 0(A1)
)= (o i) (6) = v
that is, there are y' and y* in [0, o] such that y} — y' and y% — y2 as N — co. From

(22) for 7 = 3 we obtain
0(as, Ba) = asy' + Bay?,

13



and as (ag,33) € T is arbitrary, we see that 8 € [0, 00]?.
If there are no (a1, B1), (az,B2) € ¥ satisfying (21), then

¥ = {v(ao, Bo) }vea

with some semi-group A C [0,00). By what was proved for n = 1, there is a y € [0, 0o] such
that 8(vag, vB) = vy for all v € A. A little thought reveals that there is a (not necessarily
unique) (€,1) € [0,00]? such’'that y = aof + Bon. Consequently,

O(vag,vfo) =vy =vag-E+vBo-n

and thus, 6 € [0,00]%. This completes the proof for n = 2.

It is clear that the above reasoning can be extended ton =3,4,.... m
Here is a case in which the corona My \ C7} is empty.

Theorem 4.7. If H C R™ is an additive group and £ = H N [0,00)", then C% is dense in
the mazimal ideal space Myx.

This theorem was established by Rodman and Spitkovsky [18] for n = 1 by having
recourse to the argument of Xia [21]. In particular, this proof uses the Carleson corona
theorem for H®(R) in its full strength. The following proof is based on Theorem 4.3 and
the observation that in the case at hand Yy is contained in [0, oco]™.

Proof of Theorem 4.7. We first prove that Yy C [0,00)". The smallest subgroup of R"
which contains ¥ is G = X — ¥. Obviously, G C H. Since

Y CGEGnN(0,00)" C HN[0,00)" = X,

it follows that ¥ = G N[0,00)". Let 6 € Yy. We extend 0 from X to all of G by defining
0\~ ) = () — B(s).

Fix do = (A, A € 5. I A = (AD, ..., AM) € T and A0 < 2§ for all j, then
o — A € G and Ay — X € [0,00)". Hence Ao — A € %, and therefore

0 < (X) < B(X) +0(ho — A) = (Xo).

Consequently, 8 is bounded on {X € £: A0 < /\(()j) for all 7}. This easily implies that 0 is

also bounded on {\ € G : |AU)] < A9 for all j}, which in turn shows that § : G — R is
continuous at the origin (recall that 6 satisfies (2) on G). Thus,

0(/\1\]) —+0 as Ay € G and Ay — 0. (23)

Let Ai,...,An, A € ¥ and suppose

A= Cll\l + ...+ cm/\m (CJ‘ € R) (24)

14
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By a theorem of Dirichlet (see, e.g., [12, p. 11]), for every natural number N there are a
natural number ky < N™ and integers lgN) such that

1
Nkn

(N)
I

T | <

¢; for j=1,...,m.

Hence,

= Z(k‘NC]' — l;N))/\]

i=1

knvd — S 1M
1=1

1 m
SN 2_:1 A5,
J_
and this approaches zero as N goes to infinity. From (23) we therefore deduce that
kn0(2) = S 1™M9(2;) 5 0 as N — oo,
J=1

whence

0(2) = c10(\) + .. + cmb(Am). (25)

Let first n = 1 and let g € ¥\ {0}. Every A € ¥ can be written as A = ¢\ with
¢ € [0,00), and from the implication (24) = (25) we get

, 0(A) = cb(Ao) = A(6(X0)/ o) =: My.
Thus, Yy C [0, 00).

Now suppose n = 2 and X contains two linearly independent elements \; = (o, 5)
A2 = (ag, B2). There are y;,y2 € R such that

)

0(A1) = a1 + Bryz,  0(X2) = aayr + Baya.

Every A = (a, ) € X is of the form A = ¢; A + c2A2, and the implication (24) = (25) gives

0(a, B) = 0(A) = c10(A1) + c20()2)
ci{onyy + Brya) + ca(ayr + Bay2)
= (a1 + qa)yr + (afy + c26:)y2
= ayi + Py,
Since 6(a, §) > 0 for all (o, §) € E, it results that y;,y, € [0,00), and hence we have proved

that Yz C [0,00)%. If £ does not contain linearly independent elements, the inclusion
Yz C [0,00)? follws from the n = 1 case.

It is obvious that the above argument extends to n = 3,4,... and gives that Yy is
contained in [0, c0)™.

Let now 6 € Yy and define £, by (3). If ¥4 contains a point of (0,00)", then the
argument employed in Example 3.2 shows that ¥y = £ and ‘hence § € Y. Thus, let us

assume that 34 N (0,00)® = . This implies that Xy is completely contained in one of the
(n — 1)-dimensional “faces”

Fii={(A,..., ) €[0,00)": X; =0} (j=1,...,n).
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Put K; := {(M1,..-, ) ER" 1A =0}, Hj = HNK;, %, := H;NF;. If g coincides with
%.;, we obtain from what was already proved that 8(A) = (A, y) with

y:(yl,...,yj_l,oo,yj“,...,yn), yx < oo for k # .

Otherwise we can compress the problem to one of the (n — 2)-dimensional “faces” of Fj.
Continuing in this way we arrive at the conlusion that 6 € [0, 00"

Theorem 4.3 finally gives the density of C7} in Mx. m
Remark 4.8. The converse of Theorem 4.7 is not true: ifn=1and
=7\ {1} ={0,2,3,4,...},
then obviously Yy, = [0, 00] and hence Cy is dense in Mz, but there is no additive subgroup
H of R such that ¥ = HN[0,00). m

5. The Portuguese transformation

For f € APW(R) and X € (0,00), consider the matrix function

La(f) o= ( o 0 ) |

Karlovich and Spitkovsky [13], (14] showed that some central problems of Wiener-Hopf
theory can be reduced to finding a so-called APW factorization of [x(f), i.e., to representing
I'y(f) in the form

I(f) = Ky ( 66’ 00 ) K_

e_.

where 0 € R and l\"fl and K*! are 2 x 2 matrix functions with entries in
APW?t := APWjg)(R) and APW™ := APW(_o0(R),

respectively. One can show (see [14]) that I'x(f) admits an APW factorization if and only
il I'\(Pyf) has such a factorization, where

Pfi= >, M(fe_u)e,

ﬂ-e("')‘"\)

The idea of [4] is to construct functions u,v,41,92 € APW such that
u v ey O 01\ (e O
g 92 f e-x 10 h e, |’

ugs —vg1 € C\ {0}, v<A

Because ugs — vg, is a nonzero constant, the entries of

-1
u v _ 1 ga —V
( a9 ) uga — Vg1 ( 9 U )
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belong to APW™*, and hence I'y(f) has an APW factorization if and only if [',(h) has
an APW factorization. Since v < X and h may be replaced by P,h, there is some hope
that finding an APW factorization of I',(h) is simpler than the same problem for I'y(f).
As shown in [4], [5], [6], [17], [18], there are indeed surprisingly many cases in which this
strategy works. The above approach was first employed by Spitkovsky and Tishin [19],
[20] to factorize I'y(f) for certain classes of trinomials f. However, the actual impact of
this method for APW factorization was realized only in [4] and the subsequent papers [5],
(6], [17], [18]. The Bastos, Karlovich, Spitkovsky, Tishin paper [4] received an essential
impetus from joint work of its first three authors in Lisbon, and therefore | henceforth call
the passage from I'y(f) to I',(h) (or I',(P,h)) the Portuguese transformation.

Suppose §2(f) C (=X, A) contains a minimal element —v < 0 and suppose we can find
91,92 € APW such that

extv g1 +e,fga = 1. (26)

Letting u := —e, f and v := e,4,, we get
—e,f ety ey 0 0 1Y\ €, 0
g ] f €_) 10 o gr€..\ €_,

ugy — v = —e,fgr —expg1 = —1 € C\ {0}.

and

Thus, the Portuguese transformation replaces the matrix function I'y(f) by I',(g2e-») and
thus by T,(P, (g2(e-»))
Clearly, (26) is a corona problem. Putting ey, =: e, and e,f =: f;, we can rewrite
(26) in the form
exgr + f2g2 = 1. (27)

Passage from ['\(f) to [',(g2e—») is advantageous because v < A. However, this transfor-
mation is not helpful in case it destroys some good structure owned by f. Thus, suppose
we are given an additive semi-group ¥ C [0,00) such that v + Q(f) C ¥ and 0 € ¥. We
then want to have a solution g, of (26) such that Q(P,(gze-))) is also contained in ¥. In
the language of problem (27), this means that we have

fo € APW(R) and {0} CQ(fz) C (0,p) (28)
and that we are looking for a solution of (27) such that Q(g;) N [0, 1) C ¥ or, equivalently,
P.g. € APWZ(R).

Since
leu(z +2y)l = ™, |fa(z +1y)| = [M(f2)] as y — +oo, (29)

and since |M(f2)| # 0 due to the inclusion {0} C Q(f;), Proposition 4.2 implies that if, in
addition, u € X, then (27), (28) has a solution g1,g, € APW¢(R) provided C* is dense in
the maximal ideal space My. We know from Section 4 that C, need not be dense in M.
In this light, the following result is quite remarkable.

Theorem 5.1. The problem (27), (28) always has a solution ¢,,9, € APW? such that
Pﬂgz S APWg(R)
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Proof (after Rodman and Spitkovsky). Suppose first that f; € AP2(R) and write
fr=) aje, where 0= <7 <...<Ym < p
=0

For k = (ki,...,km) € Z7, put

Ck = (ks 4 ...+ bm): (_9_1>k1 (_a_"l)km

kl'km' ao ao

(note that ap = M(f2) # 0). Further, let y = (n,... ,Ym) and set

1
92:= D Gk —€(k),
ap

(kv'Y)(l‘
m a.:

91 = Z Z Ck (__J> E(kv)+v,—n-
3= p—y, <(kyy)<p 0

A direct computation (see [17]) shows that e, g1 + fags = 1. Since v1,...,¥m € L, it follows
that g, € AP2(R).
Now let f, € APW(R) be arbitrary and determine g,92 € APW™T so that e, g +

f2g2 = 1 (which is possible because of (29) and the density of Cy in M[O,oo))' Choose
7™ € AP(R) so that ||f — f™)|lw — 0. Then

eagr + f™Mga =1+ (f™ — f2)g2 =t Ym,

and as ||¢¥m — 1llw — 0 as m — oo, it results that ! € APW* for all sufficiently large
m. Obviously,

e, st + fMaapt = 1. (30)

In [18], it is shown that the general solution g,d» € APW™ of problem (27), (28) is
given by

=g tefs, §2= 92— ve, |
where g1, 92 € APW* is any particular solution and ¢ is an arbitrary function in APWT.

Hence, from what was proved in the first paragraph of this proof and from (30) we deduce
that there are ¢,, € APW? such that

G207 — wme, € APY(R).

This implies that P,(g,%7!) € AP(R). Because ||g2¢;,! — g2llw — 0 as m — oo, we finally
see that P,g, € APWZ(R). =

In the case where & = G N [0,00) for some additive group G C R, Theorem 5.1 is
in Rodman and Spitkovsky’s paper [18]. They also realized that the ¥ = G N [0, 00)
version of the theorem is insufficient for the purposes of AP factorization: for example, if
> = {0}U[p, o) for some p > 0, one wants to know that P, g, belongs to APW¢(R) together
with fz. Therefore, Rodman and Spitkovsky [18] repeatedly employed the argument of the
proof of Theorem 5.1. Thus, although they did not state this theorem explicitly, one can
nevertheless say that they already had it.
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