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Abstract

Connections between the solutions of a single objective location optimiza-
tion problem and the efficiency sets of the belonging multiobjective location
optimization problem in R™ have already been investigated extensively.

In this work connections between efficiency sets of multiobjective location
optimization problems and solutions of single objective location optimization
problems in Hausdorff locally convex topological vector spaces with seminorms
as distance functions are given. If the single objective location optimiza-
tion problems are replaced by multiobjective location optimization problems,
e.g. because several seminorms or even families of seminorms are used sim-
ultaneously instead of only one seminorm for the single objective location
optimization problem, then the ideal solution of this multiobjective location
optimization problems should be considered. Then it is possible to produce a
multiobjective location optimization problem which consists of collections of
several criteria, e.g. with regard to the several seminorms. For only one semi-
norm the well-known multiobjective location optimization problem arises as
a collection of single criteria. The application of Hilbertian seminorm families
introduces the concept of projections. Then relations between efficiency sets,
weak efficiency sets and definite sets of projections are shown which are par-
tially generalizations of those by E.Carrizosa, E.Conde, F.R.Fernandez and
J.Puerto (cf. [1]). Examples explain the results.

Key words: multiobjective location, efficiency, seminorm, semiscalar
product.
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1 Introduction

For a certain time relations between multicriteria analysis and game theory, location
theory and other branches have been studied. The number of the corresponding
publications on this subject has still been increasing.

In [1] such connections between multicriteria analysis and location theory for
location optimization problems with Euclidean distances in finite dimensional spaces
have been considered. So different kinds of efficiency sets of the multiobjective
location optimization problem arisen by extension of a single objective location
optimization problem have been examined for relations to solutions of this single
objective location optimization problem.

It should be remarked that connections between scalar or single objective op-
timization problems and multiple objective optimization problems with different
intentions, especially with the concept of scalarization, are given in [2], [3], [4] and
[5]. So for instance there are investigations of duality and optimality conditions.

Moreover, some papers are concerned with the numerical construction of the
efficiency set (cf. [6], [7] and [8]), with approximation and location problems using
gauges (cf. [9]) and with approximately efficient solutions for such multiobjective
location and approximation problems (cf. [10] and [11]).

Now one of these relations from [1] shall be generalized (general spaces, general
distance functions, especially seminorms and infinitely many criteria). In this case
the so-called ideal solution of the multiobjective location optimization problem shall
be considered by using the results of [12]. -

In section 2 the problem is explained and something about the existence of the
ideal solution is remarked. Furthermore the different efficiency sets are defined there.
Section 3 contains relations between efficient points, weakly efficient points of the
multiobjective location optimization problem and the set of the ideal solutions if the
seminorms are Hilbertians. Moreover, there is established the connection between
the ideal solutions and some kinds of projections of sets to a convex set in the
sense of semiscalar products. So these results represent especially a generalization
of the assertions elaborated in [1] for more restrictive assumptions (cf. theorem 3.1
in this work with theorem 2 in [1]). Examples of these results follow in section 4.
Conclusions and ideas for the future development are stated in section 5. At last
the appendix and the reference list are presented.



2 Explaining the problem

Let A be an infinite set of location points a. Regarding A an optimal location s,
from a non-empty set S of locations s should be chosen. Here, for each point a € A
several, in general infinitely many, decision criteria depending on a parameter A, A
€ I, should be observed.

As most general superset for A and S the Hausdorff locally convex topological
vector space M is chosen here. Additionally it is required that S should be convex.

The optimal location point so for an element g from A4, also called the best ap-
proximation of a by S, shall be the point of S that has the smallest distance to a from
all s € S. Here, the distance functions are seminorms py from the continuous family
of seminorms {pr}res. ! As a special case the family of seminorms which induces
the locally convex topology in M can be taken. So the point a € A is approximated
by using several or even infinitely many seminorms py, A € I, simultaneously.

Thus for an element a from A with respect to the seminorms py, A € I, the
following multiobjective location optimization problem results:

It is looked for an element sq € S, with:

pala—s0) <prla—s) Vse S, Yrel. MOP(a, S)

Here, s is called the ideal solution of MOP (g, S). That means s is the optimal
location or best approximation point simultaneously for all A € I. Then the set of
all ideal solutions of the MOP,(a, S) for an @ € A is denoted by M,(a,S). The
union of all sets of ideal solutions is M, (A4, 5):

Mi(4,5) = U Ma(a,S).

a€A

If additionally all elements a € A are considered at the same time, the following
problem arises:

v—rsneiél{p,\(a—s) |la€ A\ eI}, MOP,(A,S)

Le., seminorm criteria for each of the on A depending criteria are to be consid-
ered.

It should still be noted that a seminorm is a positive semidefinite, absolutely homogeneous
and subadditive functional.



The above mentioned symbolic notation has still to be specified concerning the
solution notion that is considered. This is, because in multiobjective optimization
there are known several notions of solutions. The basic definition is that of the
efficient solution. Later, this definition will be recalled and specified to the multi-
objective optimization location problem MOP,(A, S).

If the existence of the ideal solution of MOP (g, S) is not guaranteed, that means
it is due to examine efficiency sets for MOP, (g, S), then the continuous seminorm
family should be chosen as a family consisting of only one single continuous seminorm
so as ideal solutions are present in any case. Consequently, the set I becomes a
singleton and MOP,(a,S) becomes a location optimization problem with exactly
one objective function. It is well-known as the best approximation problem of a by
S. Hence, MOP,(A, S) consists of only on A depending criteria. But this can be
done only for a single seminorm which should be also proper if the seminorm family
or then the single seminorm is not needed for inducing of the Hausdorff topology in
M.2 There are no complications if the single seminorm can also be improper, i.e. it
can be a norm.

So the important special case of exactly one seminorm criterion without addi-
tionally inducing of the Hausdorff topology in M is contained in the investigations
about several seminorm criteria. Of course, for this special case the existence of the
ideal solutions need not be considered. But generally it does not exist an ideal solu-
tion for MOP, (g, S). The existence is only possible under certain assumptions. In
chapter 1 in [12] theorem 2.4. tells something about the existence of ideal solutions.

Now it is justified to investigate the relations to efficiency sets because the set
of the ideal solutions of MOP (g, S) is not always the empty set.

As announced, the definition of the different notions of efficiency which shall be
used follows:

Definition 2.1
(i) The set of weakly efficient solutions of MOP (A, S) is:

WEnen(A,S)={so € S|Bs€ S:prla—s)<prla—so) Yae A, VA€ I}

2In the appendix the hierarchy of locally convex topological vector spaces, Hausdorff locally
convex topological vector spaces, spaces which are metricable and other spaces are shown.



(i) The set of the efficient solutions of MOP,(A, S) is:

Ase S:

— ) < pa

Epen(A,S) = {soe §| PAE9)<
ten(A§) =15 pi(@ —s) < p;
for some A €[]

So) YVae A, YA€ and
s

(a—
(@ — so) for some a € A and

For definitions of efficiency types generally based on partial orders induced by a
cone is referred to the book [13].

Furthermore, determined seminorms are used. For that purpose the following
definitions are given:

Definition 2.2 The function (-,-) : M x M — R with the properties :
(i) (z,z) >0 Vz € M,
(ii) (az + By, z) = a(z,2) + B(y,2) Vaz,y,2 € M;a,0 €R,

(iii) (z,y) = (y,z) Vz,ye M,
is called semiscalar product.

Definition 2.3 A seminorm p for which a semiscalar product (-,-) exists with p(z) =

(z,z) is said to be a Hilbertian seminorm.

With families of Hilbertian seminorms M becomes a Hausdorff pre-Hilbert-locally
convex topological vector space.® Hence, the ideal solutions of MOP,(y, S) for each
y € M can be presented as A-orthogonal projections on S, similar as in Hilbert
spaces.

To get this and other similar properties as in Hilbert spaces, but now based on
the semiscalar product, the additional definitions are listed:

Definition 2.4 An element = from M is said to be M-orthogonal to an element y
from M with respect to a considered family of semiscalar products {(, Mhaers if and
only if

(z,y), =0 VX € I

3For the characterization of the general spaces is referred to the survey in the appendix.



Definition 2.5 If U is a subspace of M then the set
U ={ze M| (z,y),=0 YA € I, Yy € U}
is called the A-orthogonal complement to U.

Remark 2.1 Each element z from M can be partitioned into two parts regarding
a subspace U from M :

$=$1+$2, I EU, T EU'L'\.

This partition is unique for families of seminorms inducing a Hausdorff locally
convex topology. The proof for the partition property is carried out in a manner
like in Hilbert spaces.

Corresponding to the relation in Hilbert spaces that the orthogonal projection of
an element y from M onto a convex set S is equal to the element of best approximation
of y by S the following corollary is obtained:

Corollary 2.1 If M is a Hausdor[f pre-Hilbert-locally convez topological vector space
with a family of Hilbertian seminorms {px},¢; and S C M, with S ts convez and non-
empty, then it is valid for y € M and a best approzimation so € S with sg = so(y):

paly—so) <pa(y—s) VseS§, Vel MOP,(y, S)
= (y—s0,5—50) <O Vs€S, ¥Iel MOP, p_(y,5)

Remark 2.2 So for Hilbertian seminorm families {ps},¢; the ideal solutions of
MOP (g, S) are A-orthogonal projections. Also here the ideal solution is unique for
families of seminorms inducing a Hausdorff locally convex topology.* The proof for
this property is also carried out in the same manner as in Hilbert spaces.

3 Efficient and weakly efficient points

Because of corollary 2.1 with theorem 2.4. from chapter 1 of [12] a possibility for
decisions about for instance the existence of projections of the convex hull of N (N
as a subset of M), conv N, is given. So it is justified to consider the next theorem.

41f the family of seminorms consists of only one properly seminorm, then the ideal solution need
not be unique. Hence also the A-orthogonal partition of an element from M need not be unique.
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Theorem 3.1 If M is a Hausdor{f pre-Hilbert-locally convez topological vector space
with a family of continuous Hilbertian seminorms {pr},¢; and A C M, S C M, with
S is convez, compact and non-empty, then:

It holds:

a) for each /1, AcC A, with card A < Ry and for each f, Ic I, with card [ < Rg:

proj(,\ei)’s(conv/i) Q ﬂWE(,\G{,\})(/‘i,S) =
rel

ﬂproj(,\e{,\}),s(conv/i) C /\—E(/\G;)(A,S) C (1)
rel

WE(AE;)(A,S) C WEpen(4,9),°

projreiys(riconv A) € B, p5(4,8) ¢ "
A-Enep(4,5) © WE,5(4,5) C WEnen(4,S);

b) for each /i, Ac A, with card A <R and for each A\ from I

WE( e 0))(4,5) = Proj(xe{x}),s(con"fi)- (3)

Herein for N C M the projection of N is:

Projens N = U {3065

néeN

pa(n—s0) <pa(n—s) | ¢
VseS, Vael |-

and the relative interior of N is:

5So it follows for (1): U Proj(y ¢ y s(convA) C WEn e (A4, S).
ACA,CArd;i(No '
fC1,cardf < Ry

According to the declaration of the union of ideal solutions in section 2 it holds:
Projiaery,s N = Mi(N,S).



N N={zeN|Te> 0with (z+eBi)Naff(N) C N}’

and

Ase S:
A—Epen(A,5)=(s0€S prala —s) < pr(a—so) Va€ A, YA€l and .
ps(a —s) < px(a—s0) Va€ A forsome A€l

Remark 3.1 For card A < o and card I < Xo the inclusions (1) and (2) and
for card A < Nokthe equation (3) in theorem 3.1 are simgliﬁed in this way that all
subsets A C A, C I have the demanded property card A < Ro and card I < Rq.

The equation (3) in b) is a part of the theorem 2 in [1], but now for seminorms
and general spaces.

Two propositions are needed for the proof of theorem 3.1. It follows the first propo-
sition.

Proposition 3.1 M is assumed to be a Hausdorff pre-Hilbert-locally convez topo-
logical vector space with a family of Hilbertian seminorms {Pr}rer- Forz, y € M
and N C M with card N < ¥ and w € W with

W = {(wn)nGN c RcardN

wnZOVnEN, anzl}

neN

it holds for each A € I

p,\(an-n-—x)S p,\<2wn-n~—y>

neN EN

— Y wy - pi(n —z) < Z w, - pi(n — y).B
neN neN

7With B, the unit ball is denoted and aff N means the affine hull of the set N.
80f course p}(z) means (p,\(z))2 for an element z from M and for A from I.



Proof A straightforward calculation using the definition of the semiscalar product
yields the following equation

X}an - pi(n — x) = L, wn - Pin)
ne n
: 4
neN neN

If equation (4) is applied to
> wa - pi(n — ) < ) wa-pi(n - ),
neN neN
so it yields
PA(an~n—1) SPA(an-n—y>-
neN neN

because of the non-negativity of the seminorms. The other direction is proved in
the same fashion. O

The following proposition comes from [14] (cf. theorem 4.2.3.) and this proposition
is also given in [15] (cf. Satz 2.103. with vector function h = 0). It is also well-known
as the generalized Gordan alternative theorem:

Proposition 3.2 Conver functions fi,..., fn defined on a conver non-empty set S
C R" are given.
Then either

fe(s) <0, k=1,...,m,

has a solution s € S or

i wi fi(s) >0 for all s € S for some w; € R, w; > 0,i=1,...,m,
i=1 with at least one w; > 0, j € {1,...,m},

but never both.

The next part of the current section is built by the proof of the theorem 3.1.



Proof of Theorem 3.1
a) Let so € proj,¢p),s(conv A) with AC A, card A < R and I cI, cad
I < Ry. Le, Ja. € conv A with:

pr(ac — s) > palac — s0) YA€, Vse S (5)
In consequence of a, € conv A there exists w, € IRi’”d"i with Z. w, = 1 and

. a€A
a. = 3 wg - a. So it holds:
aG/i

p,\(Zwa.a—s)Zp,\(zwa.a—so) V/\Ef, (6)

a€A aEA
Vs € S.
By using proposition 3.1 it results for each A € I:
> wa (pf\(a—s) - pi(a—so)) >0 VselS (7)

aGA

Thus, for this inequality a some generalized version of proposition 3.2 may be
applied. Checking the proof of proposition 3.2 in [14] it is straightforward to
establish a generalized version wherein the finitely dimensional space R™ may
be substituted by a Hausdorff topological vector space M and § C M.

Then it follows taking into consideration the non-negativity of the seminorms
that for each A € I the inequality system

pala—3) <pala—s0) Va€ A (8)
has no solution in S. That means sg € () WE(,\E{,\})(A, S).
rel
It is still to show that so € A—E(,¢5(4,5), if so € AQiWE(Ae{A})(A,S).

Therefore it is assumed that so ¢ /\—E(,\Ei)(/i, S);i.e. 3§ € S with

pra—so) Ya € A, Yrel,
pi(a—s0) Va € A for some X € I.

=
>
—_
«
|
V-3

= 9
: ©)
Considering the inequality system (8) it must be held, if all X € I in (9) build
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the subset I C I:

pa(a—3) = pr(a—s0) VYa e A VA e I\
But ps(a — 3) < ps(a — so) Va € A for some € I (or X € I) implies a
contradiction to (8). So it is valid so € A—E(, ¢ , (A,S).

Finally it follows obviously that A-E, . 1)(A S) C WE(,\el)(A S) € WE@er
(A, S) because of definition 2.1.

With the generalized version of proposition 3.2 it yields that the insolubility
of the system (8) for each A € I, in other words sy € Miei WE(,\G{,\})(A S),
is equivalent to:

For each A € I it holds for certain weights v) € R,y > 0 Va € A with 72 >0
for at least one a € A:

Y% (Pla—s) — pila=s0)) 2 0 VseS
aGA

After normalization of the weights . for each A € I the resulted inequality is
according to proposition 3.1 for each A € I equivalent to:

,\(Zw;\-a—s) Zp,\(Zw;\-a—so) Vs e S.
ac A . a€A

. A A A A o A _ 1.
It follows with a7 = 3~ w; - @, a; € convA since 3 w; = 1:
a€A a€A

For each A € [ itis fulfilled: py(a) — s) > pa(ad — so)
Vs € S

So it arises so € () proj(,eay,s(conv A).
rel

The opposite direction from (10) to the insolubility of (8) for each A € I does
not require a changing of the weights w_ to 7.

At that the equation

N WEaepp(A,8) = () proj e (ay.s(conv A) (11)
rel rel

11



is also proved.

If sp € proj(AEi)’S(ri conv A) with A C A, card A < R and IcC I, card
I < Ng, then 3 a? € ri conv A with:

pa(a® — s) > palal — s0) VA € [,VsesS.

It can be shown also for finite sets A in the Hausdorff pre-Hilbert-locally
convex topological vector space M that an element a? € ri conv A possess the

representation af = 3 wf - a with 3° wf =1 andw? >0Va € A.
a€A a€A

For this element a? the inequalities (6) with the weights w? hold also. Hence
it results after exerting proposition 3.1 for each A € I with w? >0 Va € A:

> Wk (pi(a—s) — pi(a——so)) >0 VseS (12)

aE/i

Now the inequalities (12) are summed over all A € I, then it results:

S Wk (p?\(a—s) -~ pi(a—so)) >0 VseldS (13)

a€A, el

Then it is valid sp € E(/\ei)(/i,S), ie.
There is no s € S with '

pa(a — so) VaEA,VAEi and (14)
px(@ — s0) for some X € [ and @ € A (15)
)
s

3
>
)
I
&
VAR PAN

However, if an element s from S exists fulfilling the inequalities (14) and (15
then after building the squares in (14) and (15) and summing with the weight
w? yields

Z wP (pi(a—s) - p?\(a——so)) <0 Vselbs (16)
acA, rel

This is a contradiction to (12).

E(/\E,—)(A, S) C A“E(,\ei)(/iv S) is an immediate conclusion of the definitions
of those sets.

12



b) The equation (3) is proved in the same fashion as the equation (11) merely
without building of the intersection. The single steps are performed for each
A € I instead of for each A € I, I C I card I < No.

The results from theorem 3.1 are presented in examples in the next chapter.

4 Examples

Example 4.1 M, A, and S are chosen in the following manner:
M = R?
S = {(&y)" € M|[max(lz - 3|,ly—3|) < 2] A[s+y > 4]},
A = {(a:,y)T EM|z=-2,y€ [2,5]}.

Two several families of continuous seminorms are selected:

a) {mher:  m(@Y)T) =Az+yl; =Ry \{0}, card I =¥,

b) {pdues:  pu(@y)T) =ulels T =Ry \ {0}, card J = Ry,

They are families of proper seminorms because they are not norms. Additionally
they are also Hilbertian seminorms; the belonging semiscalar products are:

a) (v hert ((@uu)T(22,02)7), = M@+ y1) (ma+2) 5 1= Ry \ {0},

b) () e <($1,y1)T 1 (ifz,y'z)T)u = pPziza;  J =Ry \ {0},

It can be defined neighbourhoods for the seminorms. For instance a neighbourhood
for the point (~2,3)T € M with the index value A = 1 from the index set I and
with the radius of the magnitude 2 is given by

Uiy (-2,3)7) = {(,9)" € B*| prct ((z,9)" = (-2,3)7) < 2}
= {@ YT eR |-z -1<y<-a+3}.

13



Another neighbourhood for the point (—=2,4)T € M is given by
v, (=207 = {(@)" € R | pums (0 9)" = (-2,4)7) <4}
= {(:c,y)T eR}|-3<z< ——1}.
The set of the ideal solutions for the problem MOP,(A, S) is (cf. figure 1):
Mi(A,S) = Mai(convA,S) = projen,s A= PTOJ(AeI).s(ConVA)
= {@y)" eR|zty=4,3¢ (1,31}
It holds: M,\(A, S) = E(,\el)(A, S) = WE(Ael)(A, S)
The set of the ideal solutions for the problem MOP (A, 5) is:
M,(A,S) = M,(convA,S) = projess A= proj,e.ys(convA)
= {(z,9)" € R*|z =1,y €[3,5]}.
It holds again: M,(A,S) = E(.es)(4,5) = WE(.es)(4,5).

A new seminorm family {px }xek is built with the union of the two seminorm families

{PA}AGI, {Pu}ueJi
{petrex = {{pahrer, {Pulues}-

The set of the ideal solutions for the problem MOP.(A4, S) is:
M,(A,S) = Mi(convA, S) = proj(.ek),s A = Proj(.ex),s(convA) = {(1,3)T} .
Here it holds:

MN(A,S) = E(KGK)(A,S) and
WE(cek)(4,5) = {(:c,y)T eR*|(z+y=4,z€[L,3)V(z=1y€ [3,5]}.

Indeed, for the subsets

A= {(—2,2)T,(—2,5)T} C Aand
K={\pe(,)|A=1,pu=2} C K,

14



ie. {p,c (( )T)} = {|z + y|,2|z|}, it follows according to (1) in theorem 3.1
the proper 1nclusxon

{(1,3)T} = proj(nemls(conv/i) C WE(er)(4,5).
For the subsets
A:={(-2,2)7,(-2,5"} C Aand
K= {(Ap)e )| 1:=0,pe{1,2}} C K,
le. {p,i ((w,y)T)} e = {lz|,2]z|}, it is valid:
PrOj(ck),s (convA) =K— E(Ne,\)(A S) = {(z,y)T eR?|z=1,y€¢ [3,5]}.
Here also according to (1) in theorem 3.1 it follows a proper inclusion:
~E(eer)(A, S) C WE(xer)(4, S).
Finally for subsets

Ky:={(\up)e (I, ) e {1,2},J:=0} C K,
Ky:={(\p)ye(,))|I:=0,p€{3,4}} C K,

ie. {pe ((2,9)")} . = le+yl,2le+yl}, {pe((=,9)7)}

it is valid:

A={(-22",(-2,5"} c A and
(1,
(1,

= {3z, 4]z}

KEK,

) = {@y)"eR|z+y=14,z€[1,3]},
) = {@y)TeRz=1,ye[35]}.

Then it holds according to (2) E(NEI\"I)(A)S) C WE(.ek)(A,S) and E(Ke;\»z)(/i,S)
C WE(«ek)(4, 5).

PIOj(xek,),s (convA) = E(eek)(A,

S
PIOj(sek,),s (convA) = Eeer, (/i S

Already the union of pTOJ(NGKl) s (convA) and PIOj(xek;).5 (convA) builds the set
WE(«ek)(A, S), that is why in footnote 5 it holds even the equality for the current
example:

WE(neK)(A’ 5) = U prOj(,{ef()'g (convfi).

AC A,cardﬁ < Ng
KCKycardK < o

15
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Figure 1: Solutions for MOP (A, S)

Remark 4.1 Generally in R” proper seminorm families {p, }ocr are defined through:
Pa(v) = (@, v)gn, @ € R

and corresponding families of semiscalar products {(-,-)_} by means of:

a€R™

(u,v), = ul(aaT)v, o€ R™

Example 4.2 M, A, and S here are chosen in the following manner:

M

LZ_(Q), with Q = (o, %) ,

16



—c(m—I) for z <

S = {feM'f(ﬂﬁ)‘:{d(m_z)3 for z >

3

A = {fele(m):t+tan2x,t€ [%,ﬂ]}

Wiy w(A

;C7d€[071]}7

M is the space of the equivalence classes of locally quadratic integrable functions
and is a proper Hilbert-Fréchet space, i.e. M is a complete Hausdorff locally convex
topological vector space, which is metricable but not normable. It holds additionally:

A ¢ 12(9),
but A C L2 ().

The family of proper seminorms {px }kca,k compact 15 given by:

pr(f) = (/quoﬁdx) :
.

The following location problem MOPg(A, S) is considered:

-

(/]a——solzdac) < (/]a—slzd:c) Vs € 5, Va € A, YK C9Q, K compact.

K K
At that the set of the ideal solutions for the problem MOPg (A, S) is:

MK(A’ S) = MK(COHVA’ S) = proj(KCQ,Kcompact),S A

= proj(kcn,xcompact),s (convA) = {f eEM lf(z) = |z — % ,T € Q} .
It holds
Mk (A,S) = Excakcompact)(4,5) C WE(kcq kcompacy) (4, S)
e (0-{ 35 &2 5 Foacou)v

<f(x)={-—c(::—§) for ¢ <

T—3 for z >

[MIENAIE]

;cemu)zen
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1r7r2 3

T 1 (12 4 6 1 )
ly:= {[M] : [5’1]}’ I = {[5“’5”] ’ [E’Tﬁ } C & ie,

3\

z)[*dz, /lf )2 da

J

{pk(Nker, = 3

-~
-~

o 1N
! \‘“

sl ®

{pk(D}ker, = /|f 2)* da, /If P do b,

P

it is valid according to (2):
proj(KeII),S(COHVA) = I\"“E(A’eh)(/ias) = E(Keh)(/ias)
—r+% for z <
= <feM f(x)_{d(a:—g) for z >

de0,1], z € Q
C WE(KCQ,Kcompact)(A$ S)a

IERRTE

Proj(Kelz).s(COHVA) = 1\"—1*)3(1\'@12)(/i S) = Ewken)(A,S)

= (feM f(z) = {z—(g_g) for z 2

cel0,1], z €
C WE(I\"CQ,Kcompact)(A) S)v

(MENAIE]

Proj(k'e(l,uIﬂ),S(COHVA) = 1\"—E(Ke(11ulz))(A,S) = E(Ke(hulz))(A’S)

- {fer() o= 3, xEQ}
= {fGM (x)=x—%,x€ﬂ}

C WE(KCQ,I\"compact)(Aa S)

Because of proj gep s (conv/i) U Proj(ker,).s (conv/i) = WE(kca,Kcompact) (4, 5) in
footnote 5 the equality is also fulfilled.
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5 Conclusions and further development

The presented thoughts have shown the existence of definite relations between solu-
tions of single objective location optimization problems and multiobjective location
optimization problems in Hausdorff locally convex topological vector spaces. In this
case the investigated multiobjective location optimization problem occurs by con-
sidering the whole given set for whose elements the best approximation points from
another set shall be chosen at the same time. If the single objective location optimi-
zation problems are extended to multiobjective location optimization problems, e.g.
because families of seminorms are used simultaneously instead of only one seminorm
for the single objective location optimization problem, then the ideal solution of this
multiobjective location optimization problems are considered.

For single seminorm distances the ideal solutions become again solutions of a
single objective location optimization problem. If the seminorms are Hilbertian,
i.e, if M is a Hausdorff pre-Hilbert-locally convex topological vector space then the
existence of the ideal solutions is equivalent to the existence of the A-orthogonal
projections.

The set of the weakly efficient points of the multiobjective location optimization
problem can be bounded below with regard to inclusion relations by certain sets
consisting of A-orthogonal projections from a finite subset of the given set onto the
set which contains the searched solutions or by certain weak efficiency or efficiency
sets of finite subsets.

Definite assumptions guarantee the existence of the ideal solutions. The future
research should follow this direction, because the decision tools about the existence
of the ideal solutions are very abstract and not easy to handle. Furthermore the
investigations shall be carried out with other distance concepts and in different
general spaces.
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Appendix
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