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G. WANKA!

Abstract. A general convex multiobjective control- approximation problem is con-
sidered with respect to duality. The single objectives contain linear functionals and
powers of norms as parts, measuring the distance between the control and the state
variables. Moreover, linear inequality restrictions are included. A dual problem is
established and weak and strong duality properties as well as necessary and sufficient
optimality conditions are derived. So-called point-objective location problems and
linear vector optimization problems turn out to be special cases of the investigated
problem. Therefore the well-known duality results for linear vector optimization are

obtained as special case.

Key Words. Multiobjective optimization, control-approximation problem, point-

objective location, duality, optimality conditions.

1. Introduction

The paper deals with duality for multiobjective control-approximation problems, where the
single objectives consist of the sum of a linear functional part (I*,u) and a power of a norm
part o*||z; — Siu||™ measuring the distance between a state variables z; and the linear
mapping S;u of the control variable u. So the objective function for the i-th objective reads

as
filzi,w) =, u) + ||z — Siul|™, i=1,...,m.

The spaces underlying the variables z; and u are assumed to be normed spaces.
The vectorial function F(z,u) = (fi(z1,u), fa(z2yu), ..., fn(zm,u))T, z = (Z1y. s Tm),
has to be minimized with respect to additional restrictions in the sense of multiobjective

(multicriterial or vectorial) optimization.
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The basic solution notion is that one of so-called efficiency or Pareto-optimality which we
are also considering here. Besides there are well-known some modifications of the defini-
tion of solutions for multiobjective optimization problems as e.g. weak efficiency, proper
efficiency etc. In the present paper there are considered properly efficient solutions to the
original control-approximation problem as well as Pareto-optimal solutions to the introdu-
ced dual problem. Scalar problems, i.e. such ones with only one objective function, where
the objective function has got the from ||z — Sul| are sometimes called (abstract) control-
approximation problems. This is the reason to denote our problems as multiobjective or
vectorial control-approximation problems.

Let us refer to some specializations of the problem formulation. If the vectorial objective
function takes the from F(z,u) = (||lzy - ul|, ||z2 — ul|, ..., ||&m — u||)T the arising vectorial
optimization problem is said to be a so-called point-objective location problem (Ref. 1).
Here the fixed location points (or demand points) z; (representing the location of any cli-
ents) have to be approximated by a facility located at u, because each client wishes the
facility to be as close as possible.

Since the above mentioned first paper by Wendell and Hurter (Ref. 1) a lot of papers
have been published concerning different aspects of such multicriterial location problems
(cf. Refs. 2-10). Among them there are investigations with respect to numerical algorithms
for determination of the set of efficient points (e.g. Refs. 2,3,8), with respect to dominance
properties (e.g. Refs. 1,4-6), geometrical properties and characterizations of efficient points
(e.g. Refs. 5,9). There also have been studied problems with different norms (round and
polyhedral) and so-called gauges, a generalization of norms to the non-symmetric case of
distance measures (cf. Ref. 5,10). Since the late eighties there are considerations concerning
multiobjective duality for such multiobjective location problems (cf. Refs. 11-14).

As well-known from scalar programming duality represents an useful tool also in vectorial
optimization and it has got its own meaning for getting insight into the properties and
structure of optimization problems.

Especially, duality can be used to obtain optimality conditions, bounds for the objective
function values, geometrical characterizations and for the construction of numerical algo-
rithms.

In recent years there has been created an extensive literature in this field. We only refer to
the book by Jahn (Ref. 15).

The present paper generalizes the problems and results of the papers with Refs. 11-14.



Especially, we consider more general objective functions (powers of norms) restrictions and
spaces. Moreover, we derive (different from Refs. 11-14) necessary and sufficient optimality
conditions characterizing properly efficient and efficient solutions, respectively. In compari-
son with general and abstract duality concepts in vector optimization (cf. e.g. Ref. 15) we
use the special structure of the control-approximation problem to establish the dual problem
and to prove the weak and strong duality assertions and the optimality conditions.

Particularly, the results also contain as special case (omitting the norm parts within the
objective function and simplifying the restrictions) the dual problem and the corresponding

duality properties for the linear vector optimization problem (cf. Refs. 15-17).

2. Problem Formulation

We are looking for so-called properly efficient solutions of the objective set {F(z,u) :

(z,u,v) € A} (we call this problem (P)) with the vectorial objective function

fi(z,u) (If,u) ay'||zy — Syull%,
F(z,u) = : = : + : (1)
fm(z,u) (7)) | Em — Smull¥y,

and the restriction set

A=4q(z,u,v):u >20,v > 0,Bu+Cv+f < 0,z,€eWi,i=1,....my. (2)
K Ko K,
Here we define z = (zy,...,2m), @ >0, n; > 1,4 =1,..., m. Moreover let UY,Z X;, 1=
1,...,m, be normed spaces, K CU Ko CY, K, C Z are assumed to be convex closed
cones. W; C X;,7 = 1...,m, denote convex closed sets. Furthermore, it should be (z =
l,...,m)S; € L(U,X;) (linear continuous mapping from U to X;) B € LU, Z), C €
L(Y,Z), f € Z, It € U* (linear continuous functional, i.e. U* denotes the topological
dual space to U). || - ||x, stands for a norm in X;. E.g. (I¥,u) means the linear continuous
functional I} at point u. The convex cones generate partial orderings in the usual way, e.g.
u Z 0 means u € K.
i

A tupel (z,u,v) € A is said to be (primal) admissible. The following definition states our

present solution notion for (P).
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Definition 2.1. An admissible point (:(l)c,ﬁ,v) is said to be properly efficient to (P) if

o] o o o
there exists a scalarizing vector A= (\1,...,Am)7,\i> 0,2 =1,...,m, such that

oT o o oT
A F(z,u) <) F(z,u)

for all admissible points (z,u,v). -

Of course, a properly efficient point (or solution) is also Pareto- optimal (or efficient) in the
usual sense (cf. Ref. 18). Now let us set another multiobjective optimization problem (P*)

which later turns out to be as a dual problem to (P) according to its properties in relation

to (P).

Let
91(p*, ")
G(p",8") = : (3)
gm(p",8")
be the vectorial objective function to (P*) with p* = (p,...,p5),p} € X7,8* = (6%,...,6%),
67 € Z* (X}, Z* are the topological dual spaces to X; and Z*, respectively), s = 1,...,m.

The coordinate functions of G read as

Jnf ai(nip?, yi) + (L= na) [IpfllXs" = (65, f) for i > 1, i > 0,
gi(P"é*) = (4)
inf a;(pr,y:) — (67, f) for n; =1 or ; = 0.
vi€EW,;

The dual restriction set is given by
B= {(p*,a*) ptlixe < 1forni=1,3A = (r,..., Am)T,

Ai > 0, with Z/\,(S: < 0, E/\,C*J: < 0,

i=1 K; =t K; (5)
S A(miaSip — 7 + B'8Y) < 0 }
=1 f(*
Here || - || x+ denotes the dual norm to || - ||x, in X?. The space indices will be ommited in

the following. A point (p*,8*) € B is said to be dual admissible. With K* we denote the

dual cone to K C X (X is assumed to be a normed space) defined by
K" ={z" € X*:(z",z) >0Vz € K}.

K™ then generates a dual partial ordering in X* in the usual way as mentioned before

for K. Such orderings occur in the definition of the set B yielding inequality contraints.
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T denotes the adjoint operator to the operator T. We consider Pareto-optimal (efficient)

- points (solutions) with respect to maximization.

Definition 2.2. A point (107*,3*) € B is said to be efficient if there is no (p*,d*) € B with

gi(p*,8%) > g,-(;’ ,3 ), ¢t =1,...,m, and g;(p*, %) > gj(;’ ,3 ) for at least one 5 € {1,...,m}.

The presented dual problem (P*) is therefore a vectorial maximation problem and we will

represent it shortly and in formal way as

(P7) G(p*,¢") » v—max_
(p*,6%) € B.

Analogously the primal problem (P) should be represented in the short form

(P) F(z,u)> v —min
(z,u,v) € A.

3. Weak Duality

The following theorem expresses a connection between the both multiobjective optimization
problems (P) and (P*) which is usually refered to as weak duality. This property is also
the reason that entitles us to call (P*) as dual to (P).

Theorem 3.1. There are no points (z,u,v) € A (primal admissible) and (p*,6*) € B
(dual adimissible) such that

gi(p*,98*) > fi(z,u), i=1,...,m, and
gj(p*’a*) > fj(mau)

for at least one j € {1,...,m}.

The property claimed in theorem 3.1. thus generalizes in a natural way the weak duality
relation for scalar optimization problems, namely the situation that the values of the dual
goal function never exceed the values of the primal goal function, when the primal problem
should be a minimum problem and the dual therefore turns out to be a maximum problem.
From this explanation it is understandable to speake of weak duality with respect to the
assertion of theorem 3.1.

Now we come to the proof of theorem 3.1.



Proof. Let us assume that the statement of theorem 3.1. does not hold.

Then there exist (z,u,v) € A and (p*,8*) € B with

filz,u) = ¢i(p*,0%) —kiy1=1,...,m,

where k; > 0 and k; > 0 for at least one j € {1,...,m}. According to the definition of the

restriction set B numbers ); > 0, 1,...,m, are assigned to (p*,d*) € B.

With these numbers we get therefore

Z Aifi(z,u) = Z Aigi(p*,6%) — Z Aiki

=1 1=1 =1

< Y digi(pt,6Y)
i=1
because of Z Ak > 0.
=1

Forthcoming we are showing the validity of the inverse inequality to (7) yielding a contra-

diction to our assumption.

From (5) it results

> Ai{nieiSip; — U7+ B*6;, u) <0 as well as Z)\ C*6, v

=1
This leads to the estimate
2 Nifilz,u) =3 (el e — Saull™ + (I}, u) >

i=1 =1
' (8)
Ailad |lze = Siul™ + (I, u) + (nii TP} — IF + B8}, u) 4 (C*6},v)).

o

=1

i

We note down

IA

(aip], zi — Siu) lewp?|| ||zi — Siul|
= |lpfli(aillzi — Siu||)

and estimate the right hand side by means of the inequality

Pl 1 1
a-b< 42 ab>0, 4~ =1
p q p q
14 ni T
Forn; > 1 weset p=n,, ¢ = 7= 7 and so we get after multiplication by n,
p—- n; —

(nicep}, z; — Siu) < aPflzs — Saull™ + (n — 1)||p;]|7.
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Moreover, we use for n; = 1
ail|zi — Siul} > (eup;, T — Siu)

since ||pf]| < 1 for n; = 1.
By this (8) can be continued following

/\1 l_n “pt ”"'
l

Ai ((nicip}, =i — Siu) + (niaup?, Siu) +

NgE

Z ’\ifi(ma u) 2
i=1

_3..
vl

(1 = )P + 3 M(einip, 22

1=1

IngENgE

1
-

3.
M

-+
Mg-

(4], Bu + Cv).

1

-
1l

Because of Bu+ Cv+ f < 0 and Z)\ 07 < 0 we have
Al =1 I\l

i=1 1=1

We substitute this in (9) and obtain

[\’]3

M) > YA - )l 1+2A (oimip}, 2.)

>

-
il
—
-
i
—

NgE

...
Il
MA

i
Ms

Aigi(p”, 6%).

1

-
1]

This contradicts to (7) and finishes off the proof.

4. Strong Duality

Ai(1 = ni)|lp; ||""" + Z/\i inf (a;np;, yi) —
Pt EW,

Coming from weak duality we refer to strong duality if there is an identity between certain

primal and dual objective values analogously as in scalar optimization. Obviously these

values then yield efficient points (i.e. solutions) to the both dual problems. The following

theorem claims such a strong duality behaviour and turns out to be the main theorem of

this paper.



Theorem 4.1. Let the existence of (Z, %, ) € A be assumed with the regularity condition
Bi+ Cv + f € int (= K;). Furthermore it is supposed that f # 0.
Let (Z,u,0) € A be a properly efficient point to (P). Then there exists an efficient solution
(101‘, 3') € B to (P*) and it holds the strong duality relation

F(&,8) =GP ,§).
For (107*,3*) there are the representation formulae (13), (20), with (Io)*,;’*) as solution to (P:\‘:‘)
(cf. (11)), the scalar dual problem to (PX) (cf. (10)).

Proof. Let (2,4, 13) be a properly efficient solution to (P). Then there exists an assigned

o

scalarizing vector A= (Niy. - ,im)T, :\,-> 0,:=1,...,m, such that
oT T

A F(z,u) > F(z,u)

for all (z,u,v) € A.

Therefore (z,%,) is a solution to the scalar control-approximation problem (cf. (1) for

F(z,u))

(P)  inf ii,- (o ||z — Saul|™ + (I, u)). (10)

A (z,u,v)EA =1
We assign to (PX) the following dual problem

(P?) sup { Yo X (U =n)|pFT

Yooeaed | L e (11)

+ ; Ai y‘-lélva,(a"n'.p” yi) - (7 ’ f) } )

where p* = (p},...,pL), Pt € X!, i =1,...,m,v* € Z*, and the dual admissible set is

given by
D={ () ¢ Il<lform=1,7 < 0,Cy < 0,
Ky K*
o ’ ’ (12)
Xi (@niSIp; —17) + By < 0
=1 . .
K*

We are entitled to refer to (Pf) as dual problem because of the property of (P;) and (P;)
A
that the infimum of (P;) is greater than or equal to the supremum of (Pi:) This weak duality

can be verified by a direct estimation in a similar way as done in Ref. 19 for an analogous
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problem. There are no convexity assumptions necessary for this assertion. On the base of
the regularity condition, as formulated in the theorem, it can be shown as in Ref. 19 for the
o* 0%

modified problem that strong duality is fulfilled and that there exists a solution (P,7) to
the dual problem (Pf)’ i.e. it holds min (Pﬁ) = max(P:\‘,'). This reads as

3

(o]

2 b (ol & =i ™+ (17, 8)) =
= (13)

o

M (L=n)| P [T + 30 X inf (i By, wi) — (3, f).
=1 veEW;

i M5l

n.‘>l?a.‘>0
Using strong duality, especially equation (13), one can derive (cf. Ref. 20) the following
U

optimality conditions for the solutions (z, %, V) and (I‘; Y ) to (P;) and (Pf), respectively.

1) n;>1,a;>0:

(Piy i —Si ) = ol Y| &, =S & I,
o* (14)
P Il = oMl 2; =Siu |-,
ni=1,a;>0:
(Pir&i ~S:8) = | & =Si & ||, 1I B | = 1if 3 8. 4, (15)
i) (P;,x;) = y:gval(Pi,y,’), (16)
i) (C*Y,8) =0, (17)
iv) <z X (niciS? B; 1) + B* 7 ,«‘i> =0, (18)
i=1
v) (Y,Ba+f)=o0. (19)

*

Now we define by means of (z,4,v) and (;7*, ’;‘) an admissible point (IDJ*, 3*), 3‘: (3:, . ,Sm),
to the vectorial dual problem (P*) which turns out to be an efficient solution to (P*) fulfilling

the strong vectorial duality relation F(z,u) = G(Io;, 3*)

..‘,“of_[?‘o o* o*
(alntsto*pt 1’u) Ay for <,-Y ,f> # O,
o L0 .
5= — 7 HamS: B -1, )5 (20)
m
| with3* € Z2*: (3%, f) =1 for(ﬁo’,f)=0.
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Remark 4.1. Such a 4* exists due to the Hahn-Banach continuation theorem.

In the next steps we show that F(z,u) = G(ﬁ ,3 ). We have to distinguish between several

cases.

I. Letbe (7', f) #£ 0, n; > 1, a; > 0. Because of (3), (4), (14), (16) and (20) it holds

o* o*

g,'(P ) )

2. Let be (’?*

to 1.

o%* o*

g,'(P ) )

3. Let be (§*

0% o*

)5)

gi(P

inf ai(n; Py,ys) + (1= n)|| B; |77 = (8, f)
yiewl

ai(n; Py, %) + (1 = ng)af|| ; —S; u ||™

————-l——(anS* b, 12 4%, f)
I

(a.-n,- Pi,.’%,' —S,' ’lot> + (1 — Tl,’)()t?‘ll .%,' —S,' '& ”"‘ + (l:, '&)
niaf || & =S @ ||™ + (1 — ni)a || & —Si 4 ||™ + (U7, %)
af || Z; —S; u||™ + (I, u)

fi(z, ).

f) #0,n; =1 or a; = 0. Then with (15) and (16) it follows analogously

inf a;(P l,y.) (6,,f>

yle 1

a,-(P,-,:E,-) - aid;iasi &> + (1:7&>
ail| 2 =S u || + (U7, 1)

fi(z,u).

,f) =0,n; > 1, a; > 0. This implies as for 1.

o*

ai{ni P, ;) + (1 — ny)a|| 2; —S;i @ ||™

_<lo ’?' +{a nSP—l* u)3*, f>

o*

ani(P;, 2:) + (1 — ny)ol || 2; —S; u ||™

— (87 £) = (cima By, Sc GYF* ) + (I, 0, ).

mh;

Because of (7*, f) = 1 and (";‘,f) = 0 the assertion results after further calculations

asin 1.
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4. Let be (";*,f) =0, n; =1 or a; = 0. The assertion follows analogously as in 2. using

transformations as in 3.

Now we examine the admissibility of (107*,((5)*) for (P*), i.e. we have to show that (107*, 3*) R
(cf.(5)).

For n; = 1 applies || Io’* Il <1 since (Io; ’;*) solves (P*) (cf. (11) and (12)).

We need to compute Z i 5 and have to distinguish according to (20) between two cases.

Let firstly be (7 f) #0. Then (17), (18) and (19) yield

Z Mo = X M A (cini St p; —I, %) 7
1=1 1=1 ('7 f)
= - <§ Ai (@iniSt P, —1.’),&> ¥
('7 'f) =1
= A (—(B Y, iNT =, co+ny =Y.
(v ,f)( ( >) (v .f)< h

For the second case (’c))’ , f) = 0 there is the same result:

*

j\.g,- -

oli

N L K (ainiS; B, 17, 0)5"

1 mAl 1

= '7* +<Z ,O\,' (Ot,'n,'s;-' ;)i —l;-'),’l?t>'7"'

™3
Ms
u[\/]s

-
Il

]

*

= 7 —(B*7,07" =Y +(Y,C % +f)7
= 7 HC T, 05+ (3, )i =T .
Therefore we have in both cases that

- Rdi=T

i=1

o*
: .

(21)

o* o* “

With (Io?*,’?*) € D (cf. (12)) and (21) one recognizes that (P ,7 ) € B.

From F(z,u) = G(l%*,g*) and the weak duality assertion of theorem 3.1. obviously follows
the efficiency of (13*,3*) to (P*). ]

As a detailed consideration of this proof shows, necessary optimality conditions can be given
for the properly efficient solutions to (P). These turn out to be even sufficient for a properly
efficient solution and the existence of an efficient solution to the vectorial dual problem (1°7)

as well as for the strong duality property. This is summarized in the following theorem.
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Theorem 4.2.

1. Under the assumption of theorem 4.1. let (:%,101,13) and (107 ,3 ) be associated properly
eflicient and efficient solutions to (P) and (P*), respectively, with the corresponding
scalarizing vector ; (i.e. especially F(z,u) = G(I‘; ,3 ) according to theorem 4.1.).

Then (z,u, 5) and (107‘,3 ) satisfy the following necessary optimality conditions:

1) forni>1,a;>0:

*
(P& =Sith) = o & =S ™, || B || = ot & S,

forn;=1,a;,>0:

(i —Sid) = | & ~S: % | and | B || = 1if & 8.4,

”) (piv‘%i> = ynélvla <pi7yi)7

i) <§ M C 5v> =0,
i=1

iw) (8 5 (et B~ + 5+ §),8) =0,
i=1

0o 0

2. Let there exist admissible (z,u,9) for (P) and (Io’*,g") for (P*) with an associated
A= (,o\l, . .,,o\m)T, j\,-> 0,:=1,...,m (cf. definition 2.1.) such that the conditions i),
..., v) are fulfilled.

Then (Z,4,9) is properly efficient to (P) and there exists an efficient element (;S*, 3*)
for (P*). The functional 3‘ has the representation (20) with 5 = l_’f:l X ér.
Moreover, it applies strong duality between (z,u,9) and (I();,S*), le. F(z,u) =

G(f’ ,3*). A regularity condition as in 1. is not required.

Proof. By means of (21) 1. follows immediately from (14), ..., (19).
To verify 2. let be (z,%,9) € A and (f»‘,S*) € B and i), ..., v) in 1. are assumed to be
fulfilled (with 3 instead of § ). We define 3= 5% 3 6. Then (5,%") € D (admissible for
(Pf)) and (14), ..., (19) are satisfied. Due to a:zriasult in Ref. 20 concerning necessary and
sufficient optimality conditions for control-approximation problems of the type (P;) and the

dual (Pi‘) this implies that (z, ﬁ,ﬁ) and (f)tﬂ‘) are solutions to (Pf\’) and (P:\’,'), respectively.

12



Furthermore there is strong duality min(Pj\a) = rna.x(P:’{').
Hence, (Z,4, V) is properly efficient to (P) per definition (cf. definition 2.1.). Now one may
apply the considerations of the proof of theorem 4.1. and so also the asserted representation

for 3* by means of (20) is obtained. 0
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