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Chapter 1

Introduction

This work deals with relationships between representation theory of finite dimensional
algebras and some aspects of algebraic geometry. Sometimes classification problems of
modules over certain algebras are largely equivalent to those for coherent sheaves on
appropriate projective algebraic varieties. Such a correspondence is often given by what
is called a tilting sheaf which can be understood in some sense as a basis of the derived
category of coherent sheaves. The study of tilting sheaves and tilting modules allows
therefore to transfer information from one category to another. Further the knowledge
of the tilting objects in a fixed category also gives valuable information about its global
structure. It is important to realize that the indecomposable direct summands of tilting
objects are exceptional objects, which are rigid. Further, a natural generalization of the
notion of tilting objects leads to the concept of tilting complexes in the derived category.

In this paper we investigate exceptional vector bundles, tilting sheaves and tilting
complexes for weighted projective lines which were introduced by Geigle and Lenzing in
order to give a geometrical approach to Ringel’s canonical algebras.

We start with a brief historical sketch on the interplay between coherent sheaves and
modules over finite dimensional algebras and give a survey on the contents of the paper
afterwards.

Coherent sheaves for algebraic varieties were studied first by Serre in 1955 [111]. Later
the concept of sheaves was used by Grothendieck to develop a general theory of schemes
which belongs to the foundations of modern algebraic geometry [35]. In this context the
following connections between modules over commutative noetherian rings and coherent
sheaves play an important role. Let A be a commutative noetherian ring and X = Spec(A)
the affine scheme associated to A. Then the category of coherent sheaves coh(X) on X
is equivalent to the category of finitely generated A-modules mod(A), mutually inverse
functors are given by sheafification and the functor of global sections. On the other hand,
let S be a Z-graded noetherian ring and X = Proj(S) the associated projective scheme.
Then the sheafification functor

~ :mod®(S) = coh(X), M — M~
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annihilates exactly the finitely generated Z-graded S-modules M € mod’(S), which

are of finite length and induces an equivalence mod®(S§)/mod?(S) 5 coh(X). Here
mod?(S)/mod(S) is the quotient category of mod?(S) with respect to the Serre subcate-
gory mod?(S) of finite length modules. This result is usually referred as Serre’s theorem.

In their fundamental papers [10] and [9] (see also [31}) Bernstein-Gelfand-Gelfand and
Beilinson gave descriptions of the derived category of coherent sheaves on a projective
space P* = P(V) in terms of modules over finite dimensional algebras. These results
translate problems of vector bundles on projective spaces to linear algebra and gener-
alize the methods of monads introduced by Horrocks {54], which belong to the central
techniques in the study of vector bundles.

Beilinson’s result can be described in terms of tilting theory as follows. Let T (resp.
T3) be the direct sum of sheaves of twisted differential forms T1 = @ogj<n () (resp.
of twisted structure sheaves T; = @ocjc. O(j)). Denote by Ai = End(T7), i = 1,2, the
endomorphism rings. Observe that A, and A; are isomorphic to triangular matrix rings

A%(V*) s°(v)

AL(V*)  A%(VY) 0 SHV)  SNV) 0
\An 1=} . . \ﬁn L : .

AR(VE) ATTI(VR) L AV sRV) SPIV) L. SO(V)

where A(V*) = @oc;<n A (V*) and S(V) = Boci<n S¥(V) are the exterior algebra of
the dual space V* and the symmetric algebras of V, endowed with the natural grading,
respectively. Then, for i = 1,2, the indecomposable direct summands of T; generate
the derived category D*(coh(P")) and, moreover, we have Ext*(T;,T;} = 0 for s > 0. A
coherent sheaf satisfying these conditions is called nowadays a tilting sheaf. It follows
‘that the derived functor

LG; : D*(mod(A;)) — D*(coh(P"))

of the functor G; = — ®4, T : mod(A;) — coh(P") is an equivalence of triangulated
categories.

In the simplest case n = | the algebras A, and A; coincide and are equal to the path
algebra A of the quiver

o -— o

The problem of classifying of all modules over this algebra of a fixed class in the Grothen-
dieck group Kg(mod(A)) represented by a dimension vector (n,m) is equivalent to the
classification of all orbits of pairs of m x n matrices under the natural action of the group
Gl(n,k) x Gl(m, k). This problem which has an application in the theory of differential
equations was formulated and partially solved by Weierstral in 1867 [118]. The final
classification of all indecomposable modules in this case was given by Kronecker in 1890
[66], and the algebra is called nowadays the Kronecker algebra.

On the other hand, for the corresponding variety P! Grothendieck described in 1957
the structure of the vector bundles by showing that that the indecomposable ones are
the line bundles O(i), i € Z [36]. Since each coherent sheaf on P! is a direct sum of a

vector bundle and a finite length sheaf and the structure of the latter ones is rather easy
to determine, we can say that Kronecker’s classification is equivalent to Grothendieck’s
result via the correspondence of Beilinson. Also, it was noticed by Seshadri [113] that the
splitting theorem of Grothendieck is equivalent to a theorem on holomorphic invertible
matrices on C*, which was proved by Birkhoff in 1913 [8] and which was already known
to Plemelj in 1908 [94], to Hilbert in 1905 [50] and to Dedekind and Weber in 1892 [21]
(see {91, Chapter I, §2, 2.4.}).

An alternative description of the derived category for coherent sheaves on projec-
tive spaces was given by Bernstein-Gelfand-Gelfand. They proved that the functor @ :
mod?(A) — D*(coh(P™)), associating the complex

(M) ..o MRO3)) > MuR03G) ...

to each Z-graded module M = €;c; M; over the exterior algebra A = @gcjcn A(V)
induces an equivalence mod?(A) = D*(coh(P™)), where mod,(A) denotes the category of
Z-graded A-modules modulo the projectives.

This construction has been generalized in [82) to tilting sheaves T’ on a nonsingular
projective variety X of dimension d such that 7" has d+1 indecomposable direct summands.
Later Polishchuk [95] gave an analogue result in the abstract setting of triangulated cate-
gories. Bernstein-Gelfand-Gelfand equivalences in the case that there exists a tilting sheaf
such that the quiver of A has d + 1 levels were given in [81] and by Hille in [51}, [52]).

The two rather different descriptions of Bernstein-Gelfand-Gelfand and Beilinson are
related by a result of Happel which states that for any finite dimensional k-algebra A of
finite global dimension there is an equivalence H : D*(mod(A)) — mod,(T(A)) where
T(A) = A x D(A) is the trivial extension of A by its minimal cogenerator D(A) =
Hom( A, k) [37]. Now, since modz(T(A1)) = modz(A) [38] we obtain the following trian-
gle of equivalences

D*(mod(A))

S
mody (

0dg(A) ————* Db(coh(P™))

The functors ®o H and LG are not isomorphic, however in [27] a correction automorphism
in each vertex is given that makes the diagram commutative.

Beilinson’s concept has several generalizations. In algebraic geometry, using the tech-
nique of a resolution of the diagonal as in Beilinson’s proof, tilting sheaves were con-
structed for other varieties like Grassmanians, flag varieties, and certain intersections of
quadrics by Kapranov [59], [60], [61], other examples related to the concept of exceptional
sequences will be explained below.

On the other hand one should remark that tilting sheaves are quite rare, in particular
a nonsingular projective curve X admits a tilting sheaf if and only if X is the projective



line. An obvious condition for the existence of a tilting sheaf on a variety is that the
Grothendieck group of the sheaf category is free of finite rank; recently Bondal has given
a necessary condition in terms of the llodge numbers (oral communication).

There is an analogous concept of lilting modules for finite dimensional algebras which
was introduced by Brenner-Butler {17] and Happel-Ringel [45]. Since that time tilting
theory has been developed rapidly by several mathematicians and has become a major
tool in the representation theory. The basic idea of this concept is that if A is a finite
dimensional algebra and T a tilting module in mod(A) then the categories of modules
over A and B = End(T') are closely related in the sense that some nice subcategories are
equivalent. It was also shown by Happel [37] that in this case mod(A) and mod(B) have
equivalent derived categories which led to a systematic study of derived categories for
finite dimensional algebras. The situation is particularly well understood if the algebra A
one starts with is hereditary, because in this situation detailed information for the modules
over A are available. In this case B is called a tilted algebra. In several papers (see for
example [45], [100], [101], [63], [64]) specific results concerning the module category of a
tilted algebra, including the shape of the Auslander-Reiten components, were obtained.
Further, tilted algebras provide interesting classes of critical algebras, as the so called tame
concealed algebras which coincide with the minimal representation-infinite algebras having
a preprojective component [47], {16] and give a useful criterion for finite representation
type [15] .

. Recently Happel Reiten and Smalg [42] have developed an extensive theory of qua-
sitilted algebras by investigating tilting theory in arbitrary hereditary abelian k categories
and raised the question about those categories admitting a tilting object. The only known
examples, up to derived equivalence, are module categories over hereditary algebras and
categories of sheaves on weighted projective lines and it was shown that under certain
additional assumptions there are no other possibilities [72], [40], [41].

Another important development for the connections between sheaves on projective
varieties and modules over finite dimensional algebras has started with the systematic
study of exceptional vector bundles on the projective plane P? and other varieties. The
notion of an exceptional object was introduced by Drezet and Le Portier [26] in order to
classify vector bundles on the projective plane. They described the possible Chern classes
of stable vector bundles on P? and gave a construction of the moduli spaces of semi-stable
sheaves with given rank and given Chern classes. An important step in the proofs is the
investigation of vector bundles E with End(E) = k and Ext'(E, E) = 0 (it follows that
Ext?(E, E) = 0), these bundles were called exceptional. Later Drezet used exceptional
bundles to obtain more concrete information about moduli spaces {22] {23], [24].

Since the middle of the eighties exceptional vector bundles on P? and other varieties
have been studied by a group of algebraic geometers in Moscow and deep results have been
obtained by Rudakov, Gorodentsev, Bondal, Kuleshov, Orlov and others. One of their
basic ideas is to put exceptional sheaves into sequences, whose lengths equal the rank of
the Grothendieck group, and then to extend these sequences to infinite ones, called helices,
with some form of periodicity [34]. To be more precise, a sequence ¢ = (E, Es,. .., E,) of
sheaves on a variety X is called an exceptional sequence if End(E;) = k, Ext*(E;, E) = 0,
for s > 0 and 0 < ¢ < n, and moreover Ext*(E;, E;) = 0, for ¢ > j and s > 0. Further,

a helix is an infinite sequence (E;);cz obtained from € in a specific way where in addition
the E,'s are related by the Serre functor [12].

Exceptional sequences were constructed explicitly for the projective spaces P, Grass-
manians, quadrics, del Pezzo surfaces, i.e. surfaces with ample anticanonical sheaf, some
Fano threefolds and some projective space bundles {34], [33], {53], [69], [62], [89], [92],
(93] [90], [103], [104] yielding therefore interesting descriptions of the derived category of
sheaves for those varieties.

In general it seems to be difficult to determine all exceptional objects in a given
category. The central technique developed by Gorodentsev and Rudakov in this context
is the method of mutations, a way of constructing exceptional sheaves from given ones.
Also problems of interesting diophantine equations appear in these considerations. In
particular, it was observed by Gorodentsev and Rudakov [34] that the ranks of a triple of
exceptional vector bundles on P? satisfy the Markov equation [80]

X 4+Y?422=3XYZ

for which an algorithm yielding all solutions is known [18]. To be more precise, all solutions
can be obtained from the trivial solution (1,1, 1) applying two standard transformations,
which allow to associate with the set of solutions a binary tree called the Markov tree.
Based on the fact that the mutation procedure corresponds exactly to these transforma-
tions Rudakov was able to construct all exceptional vector bundles on P? starting with
the triple of line bundles (O, O(1),0(2)) [103}.

As an example for the transfer of information we used Rudakov’s classification in a
joint paper with Unger [87] to deduce specific information on tilting modules over the
truncated symmetric algebra A = kQ /I where @ is the quiver

To Zo
Ty I

o (<] o
12 z2

and [ is the ideal generated by all z;z; —z;z;. The result is a countable number of infinite
trees similar to the Markov tree.

The techniques of mutations and helices were generalized to sheaf categories for other
varieties by Gorodentsev [32] and to triangulated k-categories by Bondal [11].

Bondal studied also properties of some algebras A, as to be Koszul, in terms of mu-
tations of exceptional sequences in D?(mod(A)), this in particular applies if A is the
endomorphism algebra on a tilting sheaf on a Fano variety. Later Bondal and Polishchuk
[14] introduced the concept of geometricity of a helix and studied the related homological
properties.

Mutations define an interesting action of the braid group B, on r strings on the set
of exceptional sequences of length r. This makes sense for an arbitrary triangulated k-
category C, moreover, invoking the translation functor of C one also has an action of
the semidirect product Z” x B,. Bondal and Polishchuk conjecture in [14] that the group
7" B, acts transitively on the set of exceptional sequences of length n for any triangulated
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category C which is generated by an exceptional sequence of length n. In this situation
an exceptional sequence of length n is said to be complete.

The conjecture is proved now in the case that C is the derived category of coherent
sheaves on a del Pezzo surface X. After Rudakov’s result dealing with the case X = P?
mentioned above, the transitivity of the braid group action was shown, by Rudakov [104],
for X = P! xP! and, by Nogin [89], for X being the blowing up of P? in a point, both yielding
again interesting diophantine equations. The case of an arbitrary del Pezzo surface was
solved recently by Kuleshov and Orlov {69]. In the same paper it is also shown that for a
del Pezzo surface each exceptional sequence can be enlarged to a complete one. Recent
results of Kuleshov [68] allow to hope that the transitity of the braid group action is also
valid in the case of a projective space P". We mention also that some results and several
questions in the higher dimensional case were stated by Drezet [25].

The results in algebraic geometry have led Crawley-Boevey to study the braid group
operation in representation theory of algebras [20]. He developed the corresponding theory
and showed that for the path algebra over an algebraically closed field k of a quiver @ with
n vertices the braid group B, acts transitively on the set of complete exceptional sequences
of kQ-modules. The result was generalized by Ringel to hereditary artin algebras [102].

Relationships between representation theory of algebras and algebraic geometry were
also investigated by Lenzing and collaborators. Baer worked out the general concept of a
tilting sheaf and stressed the analogy between tilting procedures from sheaves to modules
and from modules to modules {5]. In particular she proved that a tilting sheaf T on a
nonsingular weighted (or classical) projective variety X always gives rise to an derived
equivalence D*(coh(X)) 5 D*(mod((End T))).

Using a graded theory of sheaves, Geigle and Lenzing [29] created a new class of curves,
called weighted projective lines, which are related to Ringel's canonical algebras {100]. A
canonical algebra A is defined as the quotient of the path algebra of the quiver

) I 27, (p ~ 1)
L] ° L]
z3
o £2 21, (p2 — 1)22
-] L] o

;

£2 T~ il
2 2 °

Hio

-]

Tt 2%, (pe ~ 1)3,
modulo the ideal generated by the relations z?* — z5 + Az} i = 3,...,¢, where \; are
pairwise distinct elements from k\{0}. Note that A depends on the integers py, pa, ..., p,
which will be called weights furtheron, and on the parameters A;.

The key observation of Geigle and Lenzing was that a weighted projective line X admits
a tilting sheaf T such that the endomorphism ring End(T') is the corresponding canonical
algebra. Hence the category of finite dimensional modules mod(A) and the category of
coherent sheaves coh(X) share the same derived category D and, because coh(X) is a
hereditary abelian category, the structure of D is known as soon as we know the structure
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of coh(X). Further, the complexity of the classification for coh(X) depends mainly on an
invariant gx, called the virtual genus of X, which is given by the formula

~ t
mnn_+m (t=2)p- p/p:
=1

For gx < 1, the algebra A is concealed of extended Dyunkin type. In this case the problem
to classify the indecomposable coherent sheaves on X is equivalent to the classification of
indecomposable modules over a tame hereditary algebra. Moreover, this problem is also
related to the classification of indecomposable Cohen-Macaulay modules over a simple
surface singularity [30].

For gx = 1, the algebra A the algebra A is of tubular representation type. Invoking
an appropriate group action on weighted projective lines of type (2,2,2,2), Geigle and
Lenzing described in [29, 5.8] a nice link between Atiyah’s classification of vector bundles
on smooth elliptic curves [3] and Ringel’s classification of modules over canonical algebras
of tubular type [100, Chapter 5]. The latter was a significant step after the classification
for the tame hereditary algebras.

For gx > 1, the algebra A is wild. In this case the vector bundles on X are, if & is the
field of complex numbers, related to Z-graded Cohen-Macaulay modules over an algebra
of entire automorphic forms attached to a certain Fuchsian group [70].

The investigation of coherent sheaves on weighted projective lines was continued by
several authors in [30], {57], [58], [70], [74], [75], [77], (78], [79]).

We now discuss our main results and give a survey of the contents of this paper.
Chapter 2 contains some basic concepts and a short outline on weighted projective lines.
In view of later applications we treat the special case of weighted projective lines of type
(2,...,2), t-entries, { > 5, which will be called hyperelliptic.

In particular, we provide the following useful version of the Riemann-Roch theorem:
For coherent sheaves A, B on a hyperelliptic weighted projective line X the following
equality holds

dimyHomx(A, B) - dimyExty(A, B) + dimiHomx(A, 7B) — dim,ExtL(A,7B)
tk(A)  rk(B)
deg (A) deg(B)

Here 7 is the Auslander-Reiten translation in coh(X) Mas rk and deg denote the rank
and degree of a coherent sheaf, respectively. The formula is of particular interest if (4, B)
is an exceptional pair, because in this case the last two terms vanish by Serre duality and
moreover, only one of the spaces Homx(A4, B), Exty(A, B) is nonzero.

We further discuss some important properties of exceptional sheaves and show that
each exceptional vector bundle on a hyperelliptic weighted projective line is stable. Fi-
nally we summarize some results concerning perpendicular categories which will be essen-
tial in our investigation.

Chapter 3 deals with exceptional sequences and their mutations. The main result is
the following
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Theorem. Let X be a weighted projective line of arbitrary weight type and n the rank
of the Grothendieck group of the category of coherent sheaves coh(X). Then the braid
group B, acts transitively on the set of complete exceplional sequences in coh(X).

The proof of the theorem is in the spirit of the results of Crawley-Boevey [20] and
Ringel [102] and uses also the techniques of weight reduction for weighted projective lines
by means of forming perpendicular categories with respect to simple exceptional sheaves
of finite length [30].

The transitivity of the braid group operation has some important consequences which
will be applied later to the study of tilting complexes. It shows, first of all, that each
exceptional sheaf on X can be constructed from line bundles by applying mutations. It
follows that the theory of exceptional sheaves on a weighted projective line depends only
on the weights but not on the parameters. More precisely, for weighted projective lines
X = X(p,A) and X' = X(p, \') there is a bijection between the exceptional sheaves on X
and X/, respectively, which preserves the class in the Grothendieck group under the natural
identification of Ko(X) and Ko(X'). Similarly, the exceptional objects are independent of
the ground field.

The transitivity of the braid group operation gives also rise to inductive proof methods
for exceptional sheaves. We show here the following corollary which will be applied in
further investigations, too. _

Corollary. Let E be an exceptional sheaf on a hyperelliptic weighted projective line.
Then tk(E) and deg (E) are coprime.

We mention that the coprimeness of rank and degree is known in other situations,
for example for exceptional vector bundles on the projective plane [103] and for vector
bundles with trivial endomorphism ring on smooth elliptic curves [3], however it is proved
in these classical situations by completely different methods.

In Chapter 4 we study mutations with respect to an Auslander-Reiten orbit of a quasi-
simple sheaf for a weighted projective line of tubular type. We show that these mutations
can be considered as equivalences of the derived category and we characterize how they
work on indecomposable objects. We further illustrate their use for the classification of
indecomposable sheaves for weighted projective lines of genus one [74]. The basic tool for
this purpose is the concept of telescopic functors which are compositions of two chosen
tubular mutations playing an analogous role as Ringel’s shrinking functors [100].

We remark that tubular mutations, in the functorial sense, exist also for the category
of coherent sheaves on a smooth elliptic curve {85]. In some sense Atiyah’s classification
of vector bundles on those curves contains implicitly the idea of tubular mutations and
telescopic functors.

We finally give an overview of the description of the automorphism group of the derived
category of coherent sheaves on a weighted projective line. Details will appear in a joint
paper with Lenzing [76).

A third kind of mutations is considered in Chapter 5. We introduce the concept of
admissible pairs of exceptional objects for tubular weighted projective lines and define for
them, invoking the Auslander-Reiten translation, a variant of twisted mutations. These
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problems are related to the question how the homomorphisms from one quasi-simple object
to the objects on the mouth of a tube T are distributed to the various quasi-simples of 7.
In the case that the dimension of this homomorphism-space is one, the twisted mutations
generate a braid group B;. The main result states that each stable exceptional sheaf can
be constructed by starting with the structure sheaf and a simple exceptional sheaf of finite
length using twisted mutations, line bundle shifts and automorphisms of the curve X.

Chapter 6 is devoted to the question on the number of exceptional vector bundles
with some fixed invariants. In contrast to the tame situation little is known in the case
of categories of coherent sheaves for wild weighted projective lines as well as for module
categories for wild hereditary algebras. Here we show that there are, up to isomorphism,
only finitely many exceptional vector bundles of fixed rank r and degree d on a weighted
projective line of arbitrary type and we give give a bound, which is polynomial in terms
of the weights, for this number.

As a consequence, for a hyperelliptic weighted projective line the number of excep-
tional vector bundles of fixed slope ¢ = m is bounded polynomially in r. Moreover, using
an embedding of a perpendicular category C with respect to a system of simple excep-
tional finite length sheaves such that C is equivalent to a sheaf category for a weighted
projective line of tubular type (2,2,2,2), we see that for each ¢ € QU {oo} there are
exceptional vector bundles of slope q.

The more interesting exceptional bundles are of course those, which do not come from
such embeddings. Thus we introduce the notion of an omnipresent exceptional vector
bundle E by requiring that there is a nonzero map £ — S to each finite length sheaf S.

Theorem. For a wild weighted projective line there exists an omnipresent exceplional
vector bundle.

It turns out that the rank of an omnipresent exceptional bundle is greater than or
equal to the number of weights less one. In the hyperelliptic case such bundles with
"minimal” rank always exist. In fact we show more

Theorem. On a hyperelliptic weighted projective line with t weights there is, up to
line bundle shift, a unique omnipresent crceptional vector bundle of minimal rank 1 —1.

The problems appearing here are related to the question how many roots of the
quadratic form associated to X can be realized by exceptional vector bundles. We also
obtain information concerning the number of exceptional components of the Auslander-
Reiten quiver which contain an exceptional vector bundle of a fixed rank.

Chapter 7 deals with endomorphism rings of tilting bundles and tilting sheaves on
weighted projective lines. Such algebras were studied first in [75] and were called concealed-
canonical and almost concealed canonical algebras, respectively. Concealed-canonical and
almost concealed canonical algebras are important classes of quasitilted algebras.

We summarize some basic properties of concealed-canonical and almost concealed
canonical algebras. We also prove that an almost concealed canonical algebra realized on
a wild weighted projective line is wild, again.

Next we describe the general structure of the module category of a concealed-canonical
and an almost concealed-canonical algebra and determine the shape of its Auslander-
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Reiten-components in detail. It is shown, in particular, that for a wild almost concealed-
canonical algebra X, the stable part of a component in the category of L-modules of
negative rank or zero rank and negative degree, which is different from the preinjective
component, is of type ZA,,. Moreover we construct bijections between components of the
following three sets:

o {}_(X) of components of £-modules of negative rank,

¢ }(X) of components of vector bundles on X,

¢ (X)) of regular components of modules over a concealed wild algebra ; defining
the unique preinjective component of mod(X).

A similar result for the modules of positive rank is true if £ is a wild concealed-
canonical algebra. For an almost concealed-canonical algebra T this part can be "smaller”,
depending on the decomposition T = T' & T" of the tilting sheafl in a vector bundle 7*
and a sheaf of finite length T".

The bijections above are established by showing that corresponding components agree
on a cone in 7 or 7 -direction, respectively. Our results are similar to those of Kerner [63],
[64], [65] concerning the situation of tilted algebras and of Lenzing and de la Pefia [78)
dealing with the case of wild canonical algebras. We follow here the general philosophy
that the vector bundles in coh(X) have the same behaviour as regular modules over wild
hereditary algebras. Some proofs however become easier in the geometrical situation.
Moreover, in contrast to the situation of tilted algebras we can characterize special sum-
mands in the sense of StrauB [116] using the rank and degree of vector bundles appearing
in the wing decomposition of the tilting sheaf.

Chapter 8 is concerned with several aspects of tilting complexes. An object T in
the derived category D = D*(coh(X)) is called a tilting complex if Homp(T,T[i}) = 0
for 1 # 0 and the indecomposable direct summands of T' generate D as a triangulated
category. The notion of a tilting complex generalizes that of a tilting module and that
of a tilting sheaf in a natural way because, as was shown by Rickard [97], the tilting
complexes are exactly those complexes which induce derived equivalences. Therefore, in
our situation, the categories coh(X) and mod((End(T'))) are derived equivalent.

Since the category coh(X) has global dimension one, each multiplicity-free tilting com-
plex can be considered as a complete exceptional sequence. Unfortunately the converse
is not true, in general there are complete exceptional sequences of coherent sheaves which
by no way can be distributed to suitable copies of coh(X) in the derived category such
that the direct sum of them forms a tilting complex.

Nevertheless we can apply our previous results on exceptional sequences. In particular,
it follows from the transitivity of the braid group action that for two weighted projective
lines X and X’ having the same weights but different parameters there is a bijection
between the tilting complexes on X and X, respectively. This implies that the quiver and
the global dimension of the endomorphism ring of a tilting complex are independent of
the parameters. Moreover, for an exceptional vector bundle E on a weighted projective
line X the right perpendicular category E*, formed in coh(X), is known to be equivalent
to a category of modules over a hereditary finite dimensional algebra H [56]; we show
that H is independent of the parameters, too. As a consequence we obtain the following
result
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Theorem. The endomorphism ring of a tilting complex on a weighted projective line
with at least four weights is representation-infinite.

Next we investigate branch enlargements of concealed canonical algebras. We charac-
terize these algebras as endomorphism algebras of tilting complexes of the form

T=T-né..aT,[-1|aTye¢TeN(l}®... & Tum]

where T, is a vector bundle and the T; are finite length sheaves for —n < 1 < m.
Furthermore, we show that these algberas admit separating families which generalizes
results of Lenzing and the author [75], Lenzing and de la Pefa (78], and Lenzing and
Skowronski [79)].

Branch enlargements have been studied intensively by Assem and Skowroniski. In par-
ticular, they proved that an algebra is representation-infinite and derived equivalent to
a tame hereditary (resp. tubular) algebra if and only if it is a domestic (resp. tubular)
branch enlargement of a tame concealed algebras [2]. We give here for tilting complexes
on tame domestic and tubular weighted projective lines criteria whether or not their endo-
morphism rings are representation-infinite. This provides an easy and more conceptional
proof of Assem’s and Skowroriski’s result mentioned above.

We finally turn to our results in Chapter 9. Here we study tilting complexes on hyper-
elliptic weighted projective lines in detail and give a description of the general structure
of their endomorphism rings. We first prove that the indecomposable direct summands
of such tilting complexes are contained in two consecutive copies of the category coh(X)
and that for two such sunmands T;, 7, the k-dimension of Homx(T;, T;) or Exty (75, T;)
(in fact only one of them can be nonzero) depends only on the slopes u(T;) and u(T3).
Moreover, we associate to such a tilting complex T' diophantine equations in terms of the
ranks and the degrees of the indecomposable direct summands of T and in terms of the
entries of the Cartan matrix of the endomorphism algebra.

This leads to the concept of a layered algebra, for which the indecomposable projective
modules are distributed to certain layers in such a way that there are nonzero morphisms
only from objects of the former layers to the later ones, and in this case the dimension of
the Hom-space depends only on the layers but not on the individual modules. We attach
to a layered algebra ¥ the layer triangle consisting of the k-dimensions Homg(F;, P;)
between the indecomposable projective £-modules, one for each layer, and the Cartan
triangle which, in addition, contains the information how many projectives there are in
each layer.

We provide a complete classification of all finite dimensional k-algebras which are tame
and derived equivalent to a canonical algebra of hyperelliptic type. Roughly speaking,
an algebra A is tame if and only if all but finitely many modules of a given dimension can
be parametrized by a finite number of one-parameter families. The class of tame algebras
studied here is described by a list of families of algebras given by quivers and relations,
depending on parameters- We give an example of such a family in order to illustrate the
structure of these algebras.
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The proof is divided into two steps. In a first K-theoretical part we classify all layer
and Cartan triangles of layered algebras which are tame. Then a more refined analysis,
based on the interplay between vector bundles and finite length sheaves, shows how the
possible candidates can be realized by tilting complexes.

For an algebra of the family above a realization is given by a tilting complex T on a
weighted projective line X = X((2,2,2,2,2,),(cc,0,1, Ay, Xs)) (observe that the parame-
ters have changed) of the form

NN

Sipl=1] ————— F —> O(f;) —* S

N o

where the middle part can be considered as a tilting bundle on a weighted projective line
of type (2,2,2) and S40, Ss,1 are finite length sheaves corresponding to the parameters A4
and As. This structure is typical for the tilting complexes in question. They all consist
of a tilting bundle on a domestic weighted projective line of type (2,2,2), (2,2), (2} or P!
and of simple finite length sheaves from the tubes for the vertices in the first and the last
layer. ’

As a consequence we obtain

Theorem. Let T be a tame algebra derived equivalent to a canonical algebra of type
(2,...,2), t entries. Then t < 8. Moreover, the algebra ¥ is quasitilted.

We hope that using additional methods our results can be generalized to other weight
types.
Recall that the path algebra of the quiver
. lo

20

to

is called the t-subspace problem algebra, because for all but finitely many indecomposable
representations the vector spaces corresponding to the vertices on the left hand side can
be considered as subspaces of the vector space corresponding to the vertex on the right
hand side. The description of the indecomposable objects in the case ¢ = 4 by Nazarova
{88] was one of the first complete classifications of indecomposable modules for a tame
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hereditary algebra and played an important role in the development of representation
theory.

Applying the fact that the perpendicular category to a line bundle on a weighted
projective line of type (2,...,2), t entries, is equivalent to the category of modules over
the t-subspace problem algebra, we give a complete classification of all finite dimensional
k-algebras which are tame and derived equivalent to a t-subspace problem algebra. We
see again that tame algebras can occur only if t <8.

Parts of the results of Chapter 3, Chapter 4 and Chapter 7 were published in [83], [85]
and [84].

I would like to express my thanks to Dieter Happel and Helmut Lenzing for their
interest, support and many fruitful discussions on the material presented here.
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Chapter 2

Exceptional vector bundles

2.1 Basic notations

2.1.1 Throughout this work k will denote an algebraically closed field. By an algebra
A we mean an associative, finite dimensional k-algebra with identity. We shall usually
assume A to be basic and connected. It is well known that for a basic algebra A there
exists a bound quiver (Q, I) and an isomorphism A 3 kQ/I, called a presentation of A,
where I is an admissible ideal in the path algebra kQ of Q. Equivalently, A = kQ/I
may be considered as a k-linear category, whose object class is the set of points of @, and
where the morphism set A{x,y) from z to y is the quotient of the k-vector space kQ(x,y)
of all linear combinations of paths from x to y by the subspace I{z,y) = I NkQ(z,y).

By an A-module we usually mean a finite dimensional right A-module. We shall
denote by mod(A) the category of finite dimensional A-modules and by ind(4) a full
subcategory consisting of a complete set of non-isomorphic indecomposable A-modules.
Finally, D = Homy(—, k) will denote the standard duality of mod(A).

2.1.2 For an abelian category A we denote by C*(A) the category of bounded com-
plexes over A, and by K*(A) (resp. D*(A)) the corresponding homotopy (resp. derived)
category. Moreover, if A’ is a fuil abelian subcategory of A then QWA\C (resp. >.W.A\:,
D%.(A)) denotes the full subcategory of C*(A) (resp. K*(A), D*(A)) formed by all com-
plexes with cohomology in A’. For details concerning derived and triangulated categories
we refer to {49] and {117]. We denote the translation functor of a triangulated category
by X — X[1].

Furthermore, for an abelian category .A we consider the Grothendieck group Ko(A) of
A. To simplify notation we write Ko{A) instead of Ko(mmod(A)) in the case of a module
category mod(A) and Ko(X) instead of Ko(coh(X)), in the case of a category of coherent
sheaves coh(X).

Nv..u.u We are interested in the class of canonical algebras which was introduced by
Ringel [100]. Let p = (py,...,p,) be a sequence of positive integers and A = (A3, ..., A¢)
a sequence of elements of k\{0}, called parameters, which are assumed to be pairwise
distinct. Then the canonical algebra A = A(p, A) is given by the quiver
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bound by the relations z' — 25" + \izl',i = 3,...,t. (The notations for the vertices will
be explained in the next section.) Of course, we can assume p; > p; > ... > p. Fort =2
the canonical algebra of type (p1, p2) is hereditary, in particular the algebra of type (1,1)
is the Kronecker algebra.

2.2 Weighted projective lines

Geigle and Lenzing have related a weighted projective line to a canonical algebra. In this
section we recall the definition and summarize some basic properties. For details we refer
to [29]. We further put emphasis to the special case of weighted projective lines of type
(2,...,2), t-entries.

2.2.1 Let p = (p1,p2,---,p1) be a t-tuple of of positive integers, called weight sequence.
Denote by L(p) the rank one abelian group on generators 7y, Z3,...,7; with relations
mI) = paTy = ... = pZ;. Consider the polynomial algebra k[X,, X3,..., X{] as an L{p)-
graded algebra, where the graduation is given by defining .X; to be homogeneous of degree
Ir;.

Furthermore, let A = (A, Ay, ..., A¢) be a sequence of pairwise distinct elements of the
projective line P!(k), called parameter sequence. We usually assume that A is normalized
in the sense that A} = 0o, A3 =0, A3 = 1. To p and A we attach the algebra

S = 8(p,A) = k[Xy, Xay..., X}/ 1(p, A)

where I(p, A) is the ideal generated by the elements X — X3* + A, X7 i =
I(p, A) is a homogeneous ideal, the algebra S = S(p, A) is L(p)-graded.

,t. Because

2.2.2 We call ¢
@& =(t-2)¢—
Lt = 5! NZ; as ;m set of positive elements. Since L(p)/2¢ =
can be uniquely written in normal form

= piI) = pffz = = pTy the canonical element of L(p) whereas
t_, T is called the dualizing element. L(p) is an ordered group with
1 2/2p;, each L € L(p)

t
=S LE+1E with

i=1

0<<p and lez

We further put p = Le.m.(p1, p2, ..., m). The degree homomorphism é : L{p) — 7 is given
on generators by §(F;) = M, its kernel is the finite torsion group tL(p) of L(p).

m_
9.2.3 The weighted ?.&.al:a line X = X{p, A) is by definition the projective spectrum
of the L(p)-graded algebra S(p, A). As a set X consists of all L(p)-graded prime ideals of

S(p,A) and this set is equipped with the Zariski topology and an L(p)-graded structure
sheaf O = Ox. Thisis the sheaf arising from the presheaf which associates to a standard
open set D(f), corresponding to a homogeneous element f € S, the L(p)-graded quotient
of § with respect to the multiplicative system {f™,n € N}. Note that the map

X(p,A) = P'(k),

is a bijection of sets. By means of this correspondence X(p, A) can be understood as the
usual projective line, where weights p;, pz, . .., p, are attached to the ¢ points Ay, Az, ..., A
We say that the ) are erceptional points whereas the remaining points are called ordinary.

[z1, 22,0 .y = (2], 257

2.2.4 By a sheaf on X we always mean an L(p)-graded sheaf of Ox-modules. De-
note by Mod“P)(Ox) the category of L(p)-graded Ox-modules. The group L(p) acts
on Mod™®(Oy) by grading shift (I, M) — M(I), where M(I)z = M(I'+Z). Since S(p,A)
is L(p)-graded factorial, hence each line bundle L on X has the form L = Ox (&) for some
uniquely determined # € L(p), the grading group L(p) can be identified with the Picard
group Pic(X) on X. For two line bundles Ox(&) and Ox(¥) the space of homomorphisms
is given by Hom(Ox(7), Ox(¥)) = Sy-z.

A sheal M on X is called quasi- 8}23: if for each vo:; in X there is neighbourhood

U and an exact sequence

@Gx _Qi@Gx

H 1€l

_:!v\:_: - 0.

If both sets I and J are finite, then we say that M is a coherent sheaf on X.

We denote the categories of quasi-coherent and coherent L(p)-graded Ox-modules by
Qcoh(X) and coh(X), respectively. By graded sheafification coh(X) is equivalent to the
localization of the category of finitely presented L(p)-graded S-modules with respect to
the Serre subcategory of L(p)-graded S-modules of finite length.

2.2.5 Each coherent sheaf F' € coh(X) splits into a direct sum F' = F, @ F; of a coherent
sheaf Fy of finite length and a locally free coherent sheaf, i.e. a vector bundle, F,. We
will denote by cohy(X) the category of finite length sheaves and by vect(X) the category
of vector bundles. The category coho(X) decomposes into a coproduct []yex Uy, where Uy
denotes the uniserial category of finite length sheaves concentrated at the point A.

If X is an ordinary point, then there is exactly one simple object in Uy while for an
exceptional point A, this category has exactly p; simple objects (up to isomorphism). The
simple finite length sheaf at an ordinary point A is given as the cokernel term of the exact

sequence
kvu \43
0— Ox =" Ox(6) — S — 0

while the p; exceptional simple sheaves concentrated at A; arise as the cokernel terms of

exact sequences

X

0 — Ox(j3i) = Ox((7 + 1)T) — Si; — 0 j€1/p
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2.2.6 The Hom-and Ext-spaces for coh(X) are finite dimensional, moreover coh(X) is a
hereditary category, i.e. Ext2(—, —) = 0. The Hom-and Ext'-spaces are related by Serre
duality [109], [110] : Exty(E, F) = DHomx(F, E(&)). As a consequence the category
coh(X) admits almost split sequences with the automorphism F + F(&) serving as the
Auslander-Reiten translation 7x. We refer to [4] for the notion of Auslander-Reiten se-
quences and the Auslander-Reiten quiver and to [39] for the concept of Auslander-Reiten
triangles in a triangulated category.

It follows from the heredity of coh(X) that each indecomposable object in the derived
category D = D*(coh(X)) is, up to isomorphism, of the form F[¢] for an indecomposable
sheaf F' € coh(X) and some i € Z. Moreover, for each Auslander-Reiten component C in
coh(X), C[n] is an Auslander-Reiten component in D*(coh(X)) and each Auslander-Reiten
component in D*(coh(X)) has this form [77].

2.2.7 A coherent sheaf T on X is called a tilting sheaf [5], {29] if the following properties
hold:

(1) Exti(T,T)=0for all i > 0

(2) T generates D*(coh(X)) as a triangulated category, i.e. D*(coh(X)) is the smallest
triangulated category of D*(coh(X)) containing T.

It can be shown that the endomorphism algebra End(T') has finite global dimension.’
By a tilting bundle we mean a tilting sheaf which belongs to the subcategory vect(X).
The main result of [29] states that

T= @ 0x3)

0<#<E

is a tilting bundle for a weighted projective line X = X(p, A) whose endomorphism ring
is the canonical algebra A = A(p,A). T will be called the canonical tilting sheaf on X
furtheron. As a consequence the right derived functor RHom(T', —) induces an equivalence
of triangulated categories

Db(coh(X)) = D*(mod(A)).

The mapping [F] — [Homx(T, F)] - [Exty(T, F)], F € coh(X), induces an isomorphism
of the Grothendieck groups Ko(X) — Ko(A). For coherent sheaves there are well known
notions of rank and degree which by means of the isomorphism above correspond to linear
forms rk,deg : Ko(A) — Z, again called rank and degree. On a A-module M the rank
and the degree are given by the expressions

tk(M) = dimp Mo — dimg M

t -1
deg(M) =3 W Y dimM,z, | — 8( + &)dimy M.
=188 i=1

We further define for an object M in D*(coh(X)) = D*(mod(A)) the slope (M) = A_Ewr;w“
as an element of QU {co}.
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2.2.8 There are three kinds of indecomposable A-modules M: those having rk(M) > 0,
rk(M) = 0, resp. rk(M) < 0. We denote by mod, (A) (modg(A) , resp. mod_(A)) the full
subcategories of mod(A) formed by all A-modules whose indecomposable summands have
positive rank (zero rank, resp. negative rank). Further, mody(A) denotes the additive
closure of mody (A) U mody(A). .

Let cohy(X) (resp. coh_(X}) be the full subcategory of vect(X) formed by all vector
bundles whose indecomposable summands F' satisfy the condition mxﬁfﬂ, F) =0 (resp.
Homx(7T, F') = 0) and denote by cohy (X) the additive closure of coh (X)Ucohg(X). Under
the equivalence Db(coh(X)) 5 D*(mod(A))

- cohy{X) corresponds to mod, (A) by means of F'— Homx(T, F),

- coho(X) corresponds to modg(A) by means of F' — Homx(T, F),

- coh_(X)[1] corresponds to mod_(A) by means of F[1] — Exty (T, F).

2.2.9 The virtual genus gx of X is defined by

1. . 1 !
mxn_+m&8vn~+m (t-2p - p/p:
—.H~

For gx < 1, the algebra A is concealed of extended Dynkin type A. Therefore the
classification problems for coh(X) and mod(A) are largely equivalent to the classification
of indecomposable modules over a tame hereditary algebra. In particular, there is
exactly one component of vector bundles on X and this component is of type ZA.

I gx = 1, then A is a tubular algebra. It is easy to see that X has genus one if and
only if the weight sequence is up to permutation one of the following (2,2,2,2), (3,3,3),
(2,4,4) and (2,3,6). The representation theory of a tubular algebra was investigated in
[100] and the indecomposable sheaves over a weighted projective line of genus one were
classified in [74]. In this case all components in the Auslander-Reiten quiver of coh(X) are
stable tubes {29, Theorem 5.6]. We will summarize this classification in 4.2. Note further
that each tubular algebra is derived equivalent to a tubular canonical algebra [46].

If gx > 1, then the algebra A is of wild representation type. This situation was studied
in detail in [77]. In particular it was shown:

Proposition 2.2.9 [77, 4.8] Let X be a weighted projective line of genus gx > 1. Then
each Auslander-Reiten component in vect(X) has shape IR. 0

Note that, independently of the genus, the category coho(X) is closed under Auslander-
Reiten sequences and that each Auslander-Reiten component in cohg(X) is a tube.

A weighted projective line of genus gx < 1 (resp. gx = 1, gx > 1) will be called of
domestic (resp. tubular, wild) type.

Definition 2.2.10 A weighted projective line of type (2,...,2), t entries, t > 5, is called
a hyperelliptic weighted projective line. The corresponding canonical algebra is said o be
a hyperelliptic algebra.

.wmnw: that a curve Y is called hyperelliptic if it is of genus g > 2 and if there exists a
finite morphism f : ¥ — P! of degree 2 [48].
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2.2.11 For a weighted projective line X of arbitrary weight type the Euler form on Ko(X)
is given on (classes of) sheaves by x(A, B) = dimiHomx(A, B) — dimiExty(A, B). The
weighted form of Riemann-Roch's theorem {29, 2.9] states that

X(4,B) = p(L-g)k(Dk(B)+| 404y deg(B)

tk(A) rk(B) (p(1 = gx)) + (1 (B) — 1 (A))),

where Y(A,B) = Mwﬁm x(14 A, B) is the averaged Euler form.
In the case of a hyperelliptic weighted projective line the formula simplifies substan-
tially which will play a central role in our investigations.

1l

tk(A)  rk(B)
)

B

Proposition 2.2.11 Let X be a weighted projective line X of type (2,...,2). Then

k(A)  rk(B)

X(ArxB) =1 jou(A) deg (B)

= rk(A) rk(B) (1 (B) - p(4))

holds for all A, B € coh(X).

Proof. We have

— _ rk(A)  rtk{7x B)
x(A,7xB) =2(1 Imxvqi\»?r?xmvjf deg (A) deg (< B)
Applying 1 — gx = —1deg (w), rk(rx B) = rk(B) and deg (7x B) = deg(w) rk(B) + deg (1)
we get the result. o

2.3 Exceptional sheaves and exceptional pairs for
weighted projective lines

2.3.1 The concept of an exceptional object makes sense in any abelian and any trian-
gulated k-category. The term "exceptional” was introduced in sheaf theory and is now
also widely accepted in representation theory of algebras. Synonymous terms are "Schur
module”, ”stone”, "brick without selfextensions” and " indecomposable partial tilting
module”.

We recall the terminology. An object E in an abelian k-category Ais called exceptional
if End4(E) = k and ExtY(E,E) =0 for i > 0. An object E in a triangulated k-category
C is called exceptional if End¢(£) = k and Hom¢(E, E[i]) = 0 for 7 # 0. An object in an
abelian category A is therefore exceptional if and only if it is exceptional in the derived
category D(A).

2.3.2 Let us summarize some basic properties of exceptional objects in the classical case
C = D*(coh(P?).
(1) Each exceptional object in D*(coh(P?) is of the form E[i] for some exceptional
coherent sheaf P? and some ¢ € 7 32].

(2) Exceptional sheaves on P? are locally free hence can be identified with vector
bundles [34].

(3) Exceptional vector bundles on P? are stable {34].

(4) An exceptional vector bundle on P? is uniquely determined by its slope [22].

We will apply the notion of exceptional objects to A = coh(X) and C = D*(coh(X)).
We know from heredity that each indecomposable object E € @o?o_;x: can be viewed,
up to translation, as a coherent sheaf. Therefore each exceptional object in D*(coh(X)) is
of the form E[i] for some exceptional coherent sheaf on X and some ¢ € 7.

It is easily checked that in the case of a weighted projective line X the analogous
statements to (2), (3) and (4) are not true. However there is only a finite number of
exceptional sheaves which do not belong to vect(X) and we will see later that there is
a bound for the number of exceptional vector bundles of a given slope (see Chapter 6).
Moreover, in the case of a hyperelliptic weighted projective line each exceptional sheaf is
stable (see Proposition 2.3.7).

2.8.3 We will use frequently the following lemma and its corollary which was proved in
the situation of modules over a hereditary algebra [45, 4.1, 4.2}. It is easily checked that
the proof works also for sheaves on weighted projective lines.

Lemma 2.3.3 Let E, F be indecomposable sheaves in coh(X). If Exty(F,E) =0 then
any nonzero morphism E — F is an epimorphism or a monomorphism. In particular, for
an indecomposable sheaf E in coh(X), the condition Exty(E, E) = 0 implies End(E) =
k. 0

Thus an indecomposable sheaf E in coh(X) is exceptional if and only if Extx(E, E)
0 and an indecomposable object E in D = Db(coh(X)) is exceptional if and only i
Homp(E, E{1]) = 0.

—-

Corollary 2.3.3 Let T be a sheaf in coh(X) satisfying Exty(T,T) = 0. Then the quiver
of £ = End(T) has no oriented cycles. @]

2.3.4 A pair (E, F) of exceptional objects in A ( resp. in C) is called an erceptional pair
provided we have in addition Hom4(F, £} = 0 and _wxprtﬂmv = 0 for all 1 > 0 (resp.
Home(F, E[i]) = 0 for all i € Z). The following lemma shows that for an exceptional pair
(E,F) in coh(X) at most one of the spaces Homx(E, F'), Exty(E, F} is nonzero.

Lemma 2.3.4 Let H be a hereditary abelian category end (E, F) be an exceptional pair
in H. Then Homy(E, F) =0 or Ext}(E, F) = 0.

Proof. Suppose that there is a nonzero map f : E — F. We have Ext} (F, E) = 0 by
assumption, consequently f is a monomorphism or an epimorphism. Assume first that f
is a monomorphism. Then the induced map Ext},(F, F') — Ext},(E, F) is an epimorphism,
and it follows that Extl,(E, F) = 0, because F is exceptional.

If f is an epimorphism the argument is similar: The epimorphism f induces an
epimorphism Ext}{E,E) - Ext}(E,F). Because E is exceptional, we obtain again
Ext(E, F) = 0. 0
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Proposition 2.3.5 Let X be a weighted projective line of type (2,...,2) and let (E, F') be
an exceptional pair in coh(X). Then
: S k() k(T
(i) x(E,F) = deg(E) deg(F) |~ rk(E) tk(F) (u (F) — 1 (E)))

(1) If u(E) < p(F), then Homx(E,F)# 0 and dimiHomx(E,F) =

(iii) If u (E) > p(F), then Exti(E,F)#0 and dimiExty(E,F)=—
(iv) If p(E) = u(F), then Homx(E,F)=0 and Exty(E,F)=0.
Proof. According to 2.2.11,

ek(E) k(F) | . Y
deg(E) deg(F) |= X(E:xF)=

= dimyHomx (E, F) — dimgExtk(E, F) + dimyHomx(E, 7 F') — dimgExty (E, 7x F').

Since (E, F) is an exceptional pair, in view of Serre duality the last two terms vanish.
This proves (i). The other statements follow directly from the previous lemma. u]

2.3.6 Let E be an indecomposable object in coh(X) lying in a component which is either
a tube or of type ZA,,. Then the quasi-length | of E is the largest integer such that there
exists a sequence E = E; - E;_y — ... » E; —» E, = F of irreducible epimorphisms. In
this case we call F the quasi-top of E and we write E = FU Further, if E has quasi-length
1, then there is also a sequence G = Gy — Gy <= ... = Gi—y = G; = E of irreducible
monomorphisms. We call G the quasi-socle of E and we write £ =l g

Note that for any finite length sheaf its quasi-length agrees with the usual length.

It is easily seen that a finite length sheal E € cohg(X) is exceptional if and only if its
quasi-length is smaller than its 7-period, in particular the exceptional finite length sheaves
belong to non-homogeneous tubes. In case X is of domestic type each indecomposable
vector bundle is exceptional. If X is of tubular type, then an indecomposable vector
bundle is exceptional if and only if its quasi-length is smaller than its 7-period. In the
wild case the following result goes back to StrauB [116] (see also [77, 7.4]).

Proposition 2.3.6 Let X be a weighted projective line of genus gx > 1. Then for an
indecomposable vector bundle E € vect(X) the following conditions are equivalent:

(i) E is exceptional of quasi-length l.

(ii) The quotients F,7xF,... 75"\ F of the Auslander-Reiten filtration for E are excep-
tional and satisfy Homx(F, 74 F) =0 for all 1 <h < 1.

(iii) Each object E' of quasi-length <1 from the Auslander-Reiten component of E is
exceptional. O

Moreover, it was shown in [77] that the maximal quasi-length for an exceptional vector
bundle on a wild weighted projective line is universally bounded. This bound equals 1, 2,
3, or 5 depending on the weight type of X, see _Nﬁ 10.5] for details.

tk(E)  rk(F)
deg (E) deg(F)

tk(E)  rk(F)
deg(E) deg(F)
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2.3.7 A nonzero vector bundle E € vect(X) is called semi-stable [resp. stable] if for each
nonzero proper subbundle F* of E we have u(F) < p(E) [resp. p(F) < p(E)]. If X is
of domestic type, then each indecomposable vector bundle E € vect(X) is stable. In
the tubular case each indecomposable vector bundle E € vect(X) is semi-stable and the
stable bundles coincide with the quasi-simple ones [29]. If X is wild, then an exceptional
vector bundle E on X need not to be semi-stable. In particular, if E is not quasi-simple
then it is not semi-stable. However in the hyperelliptic situation we have the following
result.

Proposition 2.3.7 Let X be a hyperelliptic weighted projective line. Then each excep-
tional vector bundle E on X is stable.

Proof. Suppose that E is an exceptional vector bundle and F' is a nonzero subbundle of
smaller rank. Applying the functor Homyx(—, E) to the embedding F' — E and using the
fact that E is exceptional we obtain that Ext}(F, E) = 0. Furthermore, Endx(E) = k
implies Homy(E, F') = 0, and consequently Exty(F,7xE) = 0 by Serre duality. Therefore
X(F,7xE) = dimiHomx(F, 7x E) + dimyHomx(F, E) > 0. On the other hand, by 2.2.11,
X(F,7xE) = tk(F)tk(E) (¢ (E) — p (F))), which proves that pu (E) > p(F). u]

It is easy to see that for a wild weighted projective line each indecomposable semi-
stable vector bundle is quasi-simple [77, 8.1]. Combining this with the proposition above
we obtain a new proof for the maximal quasi-length of an exceptional bundle on a hyper-
elliptic weighted projective line (compare {77, 10.5]):

Corollary 2.3.7 Each exceptional vector bundle on a hyperelliptic weighted projective
line is quasi-simple. : u]

Observe that the same holds true for a tubular weighted projective line of type
(2,2,2,2).

2.4 Perpendicular categories

2.4.1 If B is a system of objects in an abelian category A, the category B* right per-
pendicular to B is defined as the full subcategory of A consisting of all objects A € A
satisfying the following conditions

Hom(B,A)=0, Ext'(B,A)=0 forall Be B

Dually the left perpendicular category is defined. Perpendicular categories were intro-
duced in [30], see also [108]. If A is a hereditary algebra with n simple modules and X is
an exceptional A-module, then the right perpendicular category X*, formed in mod(4),
is equivalent to a module category mod(Ay) for some hereditary algebra Ag having n —1
simple modules [30]. For exceptional objects in coh(X) we have the following results which
are basic for the rest of our investigations.
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Theorem 2.4.2 [30] Let X = X(p, A) be a weighted projective line and S a simple ezcep-
tional finite length sheaf concentrated at ;. Then the right perpendicular category S*,
formed in coh(X), is equivalent to a category of coherent sheaves coh(X') on a weighted pro-
jective line X' = X(p', A) with weight sequence p' = (pi,..-pi-1, Pi— 1, Pis1, .-, Pn) and where
the parameter sequence X remains unchanged. In particular, rk(Ko(X')) = rk(Ke(X))-1.0

Theorem 2.4.3 [56] Let E be an exceptional vector bundle on a weighted projective line
X with tk(Ko(X)) = n. Then the right perpendicular category E*, formed in coh(X),
is equivalent to a module category mod(H) where H is a (not necessarily connected)
hereditary k-algebra with n — 1 simple modules. o

If L is a line bundle on X, then the algebra I is explicitly known. Up to a shift we
can assume that L = Ox(&). Then the right perpendicular category Ox(¢)* is equivalent
to a module category over the path algebra Ag which is given by the quiver

& 2, (py — )i
0 ——as—p 0 | ———p O
) 212 (p2 — 1)i2
0 ——0 V., ——— O

;

0 et O, —————p O
£ 2%, (pe ~ )&

and, under the identification Ox (€)1 = mod(Ay), the line bundles O(%), 0 £ £ < ¢, form
a complete system of indecomposable projective modules in mod(Ae) {77, Proposition
3.6]. In the special case of a weighted projective line of type (2,...,2), t entries, the dual
of Ag is the t-subspace problem algebra.

Chapter 3

Mutations of exceptional sequences

Throughout this chapter, unless stated otherwise, X denotes a weighted projective line of
arbitrary weight type.

3.1 Exceptional sequences for weighted projective lines

3.1.1 The concept of an exceptional sequence was developed in {34] and generalized in
[11]. A sequence of exceptional objects ¢ = (Ey, ..., E;} in an abelian category A (resp.
in a triangulated k-category C) is called an ezceptional sequence of length r provided
Ext%(E;, E;) = 0 (resp. Home(E;, E;[s]) = 0) for all i > j and all s € 2. Actually we are
interested only in isomorphism classes of objects, not in the objects themselves, thus an
exceptional sequence will be considered as a sequence of isomorphism classes.

3.1.2 Let € be an exceptional sequence of length r in D¥(coh(X)). If r equals the rank of
Ko(X), we call € a complete exceptional sequence. Observe that the classes of the objects
of a complete exceptional sequence form a basis of the Grothendieck group Ko(X).

Lemma 3.1.2 Let (E\,...,E,) be a complete exceptional sequence in Db(coh(X)). Then
the smallest full triangulated subcategory (Ey,..., E.) containing all E; coincides with
Db(coh(X)).

Proof. Consider the full subcategory C =: (E,..., E,) of D = D*(coh(X)). C is an
admissible subcategory in D in the sense of (12, 2.10}. This means that for any object
Y € D there is a triangle C =+ ¥ — B with C € C and B € C*. Here C* denotes the full
subcategory of D formed by all objects Z € D such that Homp(X, Z[n]) = 0 for every
X €C and every n € 1.

We claim that C* = 0. To prove this, we can assume that all £; are sheaves. Then it is
sufficient to show that the right perpendicular category, formed in coh(X), to {Ey, . .., En}
vanishes. Assume to the contrary that there is an 0 # F € (Ej, ..., E,)*. By aline bundle
shift we can assume that F, Ey, ..., E, belong to coh» (X) = mody(A). But then (Ey, ..., E,)
is an exceptional sequence of A-modules of projective dimension < 1. Applying {30] we
conclude that the perpendicular category (Ei,..., Ex)*, formed in mod(A), is zero, a
contradiction. Therefore B = 0, and Y belongs to C. o

29
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3.1.3 We have the following enlargement property, which in the case of a category of
modules over a hereditary algebra was proved by Crawley-Boevey [20, Lemma 1].

Lemma 3.1.3 Any exceptional sequence (Ey, ..., Eq, Fi, ..., F;) in coh(X) can be enlarged
to a complete exceptional sequence (Ey,...,E,, Hy,..., Hy, Fy, ..., F.).

Proof. It suffices to find a complete exceptional sequence (Hy, ..., Hy, Iy, ..., F¢) in the
category *(Ey,...E,) which is equivalent either to a module category mod(H) for some
hereditary algebra H or to a sheaf category coh(X’) for a weighted projective line X’ of
smaller weight type. In the first case we can apply Crawley-Boevey’s lemma and in the
second one we can reduce, by 2.4.2, to the case a = 0. Then it suffices to find a complete
exceptional sequence (Hy, ..., Hy) in (Fy,...F.)*. Repeating the previous argument we only
need to consider the case a = 0 and ¢ = 0. In this case the indecomposables from the
canonical tilting sheaf, suitably ordered, give a complete exceptional sequence. O

Lemma 3.1.4 If(E,,...E,) and (F\, ..., F,,) are complete exceptional sequences in coh(X)
which differ in at most one place, say E; = F; for j # 1, then also E; = I,

Proof. By 2.4.2 and 2.4.3 L(E,...Ei.;) N (Eis1, ..., E,)' is equivalent to a category
mod(A) with one simple module, hence E; = F;. O

3.1.5 An exceptional sequence(Ey, ..., E,) in an abelian category A is called orthogonal
if Homu(E;, E;) = 0 for all i # j. In the situation of a module category Ringel has
proved the following result

Theorem 3.1.5 [102] The orthogonal complete exceptional sequences in a category of
modules over a hereditary algebra are just those exceptional sequences which consist of
the simple modules. O

In contrast to this case for the category of sheaves on a weighted projective line we
have the following

Proposition 3.1.5 There are no orthogonal complete exceptional sequences in coh(X).

Proof. Suppose that ¢ = (Ey, Es, ..., E,) is an orthogonal complete exceptional sequence
in coh(X). Shifting with a line bundle we can assume that all E; belong to cohy(X) =
mody (A). B

Denote by C(e) the smallest subcategory of mod(A) containing all E; which is closed
under extensions, kernels of epimorphisms and cokernels of monomorphisms. Then C(¢)
equals U(¢), the subcategory consisting of all A-modules which have a filtration by modules
of the form E; (see [98, 1.2]). Moreover, the same proof as in [20, Lemma 3] shows
that C'(¢) = mod(A). Observe that we we can apply the induction arguments since the
projective dimension of E, is < 1.

Now, Ey, ..., E, are the simple A-modules which is impossible, because there is one
simple A-module belonging to mod_(A). O
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3.2 The braid group action on the set of exceptional
sequences

3.2.1 We recall the concept of mutations and the braid group action. For further details
we refer to [34], [11] and [14].

Let C be a triangulated k-category. For an exceptional pair (E, F') in C we consider in
the derived category of vector spaces the complex Hom*(E, F') = @,;¢z Home (E, F'[j])[—]
with trivial differential. We assume that all spaces Hom®(E, F') are finite dimensional.

Then the left mutation LpF of F by E is defined by the distinguished triangle

LEF[~1] — Hom*(E,F) @ E <3 F —» LgF

where can is the canonical morphism which corresponds to the sequence of identities via
the identification

Home(Hom*(E, F)® E,F) = @ DHome(E, F[j]) ® Home(E, F[5])
F134

@ Ende(Home(E, Fj1))

j€r

1R

Dually, the right mutation RpE of E by F'is defined by a triangle
RrE — E £an UECEA@., muv Rk F — qwm,m_:.

Here duals of vector spaces have the reversed grading. The exceptional pairs (CgF, E)
and (F,RrE) are called the left and right mutation of (E, F), respectively.

In other words, let (E, F') be an exceptional pair. Then Hom(E, F[j]) # 0 for only
finitely many j € Z. For each j choose a basis 9 \..E of Hom¢(E, F[j]) and consider

1
the cone C; of the mapping @,ez(E[—j])" Ly F, where f is the map with coordi-
:wpom.\_:v—lg._, Ce \%;Ib_ This construction is independent of the choice of the basis of
Hom(E, F[j]) and Cy is isomorphic to LgF'.
Dually, let Qm be the inverse cone of the map £ Fv ®;e2(Fj])", where f is again
the map with coordinates ] | - ,\%;I\._. Then C7; is isomorphic to RpE.

3.2.2 Let B, be the braid group on r strings, so with generators o1, ...,0r_1 and with
relations o;0; = oj0; for j > i 42 and 00410 = 0i410i0i41 fori = 1,...,r — 2. The
group B, acts on the set of exceptional sequences of length 7 in C by

Q..Ahw_ § sy mxv = A@T ey mw..l? @_..:,ﬂmm.i @J ml.f “rey Nﬂv

Q...l»ﬁm: ) m«.v = ANW:‘.Jmmlmqhm\,.m&+-qm..,.mn,.fn,...vm‘v

Moreover, denote by G, the semidirect product 2" x B, defined by the group homomor-
phism B, = S, — Autz(Z") being the composition of the map, given by o; > (i,1+ 1)
(the transposition in the symmetric group S, ), with the natural action of 5, on 7". Then
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also the group G, acts on the set of exceptional sequences of length r in C; for the elements
e; of the natural basis of Z" we define

ei{ Bvyoes Bv) = (EisonsBicts Bi1), Bigisoses Br ).

We are interested in the situation where C is D*(coh(X)). For any exceptional pair
(E,F) in coh(X) there are uniquely determined exceptional sheaves LF' = LpF and
RE = RpE which, up to translation in the derived category, coincide with LgF' and
RrE, respectively. Indeed, this is a consequence of the fact that LgF and RpE are
exceptional in D?(coh(X)). Observe that as in the situation of [32], LF is defined by one
of the three following exact sequences

0 — LF = Homx(E,F)®@ E — F — 0

0 =3 Homz(E, F) @ B 25 F' — LF —+0
0— F— LF — Exty(E,F)@ E — 0

and a similar fact is true for RE.
There is also an action of the braid group on the set of exceptional sequences of length
7 in the abelian category coh(X). In fact, it is easy to see that

QA@T ceny mwwv = A@_, ceey @..l? Nw.c:. Nwm:: m.., ml.m, weey @qv

Q..,!gm_,...,m*v = AN_T..;M..IT hm.@.%fm._; m._.+uq..;mwv

define an action of B,.

3.2.3 In [34] Gorodentsev and Rudakov introduced the concept of a heliz by extending
a complete exceptional sequence on P™ in both directions. This concept was generalized
by Bondal [11] to arbitrary varieties and applies to weighted projective lines, as well.

Definition 3.2.3 A sequence (Ei)icz of objects in D(coh(X)) is called a heliz of period
nif E; = Eiyn(B)[2—n] foralli€el.

Let € = (Ey, ..., E,) be an exceptional sequence in D*(coh(X)). Defining inductively
new objects
M:T. == \NNal_m_: 1>0

E_i=L""E,., 1 2>0

we associate to € an infinite sequence S = (E;);cz. The exceptional sequence € is called a
foundation of a helir if the sequence S constructed in this way is a helix of period n. In
the case of algebraic varieties Bondal proved the following

Theorem 3.2.3 [11] Let Y be a variely with very ample anticanonical sheaf and ¢ =
(Ey,..., E,) an exceptional sequence in D*(coh(Y)). Then the following are equivalent:
(i) Ey, ..., E, generate D*(coh(Y)) as a triangulated category.
(i) € is a foundation of a heliz. m]
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The proof of the implication (i) = (ii) uses only Serre duality and arguments in
perpendicular categories and can be applied to the situation of weighted projective lines.
Using Lemma 3.1.2 we obtain

Proposition 3.2.3 Let X be a weighted projective line and ¢ = (E\, ..., E,) a complete
exceptional sequence in D*(coh(X)). Then € is a foundation of a heliz. u]

Corollary 3.2.3 Let ¢ = (Ey, ..., E,) be a complete exceptional sequence in D*(coh(X)).
Then
oilost ot = (Eu(&)[2 = n), Eiy ..y Ency)
Op10n-2...016 = (Eq, ..., En, B/ (=&)[n — 2]).
o

Using the proposition above we can, up to translation in D*(coh(X)), always assume
that, without changing the ranks of the sheaves involved, a fixed sheaf of an exceptional
sequence stands at the beginning or the end of an exceptional sequence.

3.3 Transitivity of the braid group action

Theorem 3.3.1 The braid group B, acts transitively on the set of complete exceptional
sequences in coh(X).

Corollary 3.3.2 The group G, = 1" x B, acts transitively on the set of complete excep-
tional sequences in D*(coh(X)).

3.3.3 The proof of the theorem is by induction and rank-reduction. We need some
preparation. We will also use the following theorem of Crawley-Boevey dealing with the
braid group operation on the set of exceptional sequences of modules for a hereditary
algebra.

Theorem 3.3.4 [20] Let H be a finite dimensional hereditary algebras with n simple
modules. Then the braid group B, acts transitively on the set of complete exceptional
sequences in mod(H). o

Lemma 3.3.5 Let (Ey, Eq, ..., E,) be an ezceptional sequence in coh(X) such that
Qmakwfusiﬁm:muv N 2.
(i) Suppose that LE, = Lg, Ey is defined by an exact sequence

0— h@n — :OBXAM\,TENV ® mu =¥ m» — 0.

Then morphisms 0 # h € Homx(LE2, Ey) and 0 # f € Homx(Ey, Ez) are either both
monomorphisms or both epimorphisms.
(ii) Suppose that RE; = Rg, Ey is defined by an exact sequence

0 FE — UEOBXANNT@»V ® E; — RE;, = 0.

Then morphisms 0 # h € Homx(Ez, RE1) and 0 # f € Homx(E;, Ez) are either both
monomorphisms or both epimorphisms.
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epimorphism. Since f is an epimorphism we conclude that dimiHomx(E, E3) > 2, and
then by Lemma 3.3.5, h is an epimorphism.
Now, in this case,

tk(Ey) > tk(E2) > tk(RE))

and therefore again ||oy¢€|| < |||, which completes the proof. O
Lemma 3.3.7 Assume that a complete exceptional sequence ¢ in coh(X) contains a finite
length sheaf. Then in the orbil of ¢ under the braid group action there is an exceptional
sequence containing a simple finite length sheaf.

Proof. Let s be minimal with the property that the orbit of € contains an exceptional
sequence with a sheafl F of length ¢. By 3.2.3 we can assume that this exceptional sequence
is of the form (Ey,..., En_y, F).

We have to show that s = 1. Assume that F is not simple and denote by S the socle
of F. We claim that (E,..., E,_1,S) is an exceptional sequence, too. Indeed, we have
Ext}(S, E:) =0for 1 <i<n— 1, because the embedding § < F induces epimorphisms
Ext)(F, E;) — Exty(S, E;) and the first Ext-group vanishes by assumption. On the other
hand, Homx(S, E;) = 0 for 1 < i < n — 1, because the existence of a nonzero morphism
from S to some E; implies that E; also has finite length, and equals therefore IS, for
some r, the unique indecomposable finite length sheaf with socle S and length r. Then
r > s by minimality of s. But this implies Homx(F, E;) # 0, contrary to the fact that
(Ey, ..., En_1, F) is an exceptional sequence. Thus we have two exceptional sequences
which coincide in the first n — 1 terms but are different in the last one. By Lemma 3.1.4
this is impossible. . m]

Proposition 3.3.8 Let X be a weighted projective line such that at least one weight is
greater than one, i.e. X % P'. Then the orbit of the braid group action of any complete
exceptional sequence contains an exceptional sequence with a simple sheaf.

Proof. By Propositions 3.3.6 and 3.2.3 we can assume that the exceptional sequence is
of the form (Ey, ..., E._1, L) where L is a sheaf of rank < 1. By Lemma 3.3.7 it remains
to consider the case that L is a line bundle. In this situation the Riemann-Roch theorem
implies the existence of a simple exceptional sheaf S such that Homy(L,S) = 0. Now,
the perpendicular category L' is equivalent to the module category for the path algebra
Ao given by the star in 2.4.3, and S belongs to L*.

Applying the results of Crawley-Boevey mentioned in 3.1.3 and 3.3.3 we see that the
exceptional sequence (S) can be completed to an exceptional sequence (Y1, ...,Y,_3,8) in
mod(Ap), and moreover, (Ey, ..., E,_1) and (Y1,...,Y,_2,8) are in the same orbit under
the braid group action on the set of complete exceptional sequences in mod(Ag). It follows
that (E,,..., E,_1, L) and (Y}, ..., Y2, S, L) are in the same orbit of the acton of the braid
group B,_,. m]

3.3.9 Proof of Theorem 3.3.1 We show by induction on the rank of K¢(X) that the
group B, acts transitively on the set of complete exceptional sequences in coh(X).
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Ifn = 2 then X = P'. In this case an exceptional sequence is of the form (O(i), O(i+1))
and the braid group B; = Z obviously acts transitively on the set of these exceptional
sequences.

Now, suppose n > 2 and assume that € = (Ey, Es, ..., F,) is an exceptional sequence in
coh(X). By Lemma 3.3.8 we have g.c = (E},...E},_,,S) for some g € B, and some simple
sheaf S. Denote by K = (0,0(%)),...,O((p: — 1)), 0(c)) the exceptional sequence
corresponding to the canonical tilting sheaf. Since S is exceptional simple, § = S;; for
some i, (see 2.2.5). From the exact sequence )

0— O@UT) > O+ 1)T) > Si; =0

we see that the right mutation of the pair (O(jZ;), O((j +1)&;) equals (O((j +1)75), S ;)
Thus, for some g; € B, we get ¢;. K = (0,...,0((j + 1)&;), S j,...). Observe that in case
j =pi— 1,1 #t, we first can apply transpositions in order to arrange that O(;&;) and
O((j+1);) are neighbours. Applying if necessary 3.2.3, we obtain g,.K = (Fy, ..., Fnoy, S)
for some g, € B, and line bundles Fi,..., F,,_;. Now, the right perpendicular category
St is equivalent to a sheaf category coh(X') for a weighted projective line X' = X(p’,A)
with weight sequence p’ = (pi1,---Pi—1,Pi — 1, Pit1,-., Pn). By induction (E1,..., E}_;) and
(F\, ..., Fa_y), considered as complete exceptional sequences in S*, are in the same orbit
under the action of the braid group B,_; on the set of complete exceptional sequences in
coh(X')). We conclude that e and K are in the same orbit, which finishes the proof. O

3.4 Bijections between exceptional sheaves

The transitivity of the braid group action has important consequences. In particular we
are going to show that the exceptional sheaves on a weighted projective line do not depend
on the parameters. An application to tilting complexes will be given in 8.2.

Lemma 3.4.1 An exceptional sheaf E on a weighted projective line X is uniquely deter-
mined by its class [E] in Ko(X).

Proof. Suppose that E and E’ are exceptional sheaves in coh(X) such that [E] = [E'].
Since 1 = x(E, E) = x(E, E') there is a nonzero map f : £ — E'. Write K = kerf,
B =imf, Q = cokerf and consider the exact sequences

(1) 0K -—E-B-—0,

(2) 0+B—FE —Q—0.

Applying the functor Homx(E, —) to the exact sequence (1), we obtain Homx(E, K') = 0,
because End(E) = k and Homx(E, a) is nonzero. Moreover, application of Homx(£’, —)
to (2) gives ExtL(E’,Q) = 0, since Exty(E’, E') = 0. Note further that the assumption
[E] = [E'] implies that [K] = [Q]. Now,
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—dimExty (E, K) dimgHomy (E, K) — dimExty (E, K)
= X(E,K)
x(E',Q)
dimgHomx(E', Q) — dimExtL(E', Q)

= dimyHomx(E', Q).

This is possible only in case Homx(E’, Q) = 0. Therefore @ = 0, and consequently f is
an epimorphism. It follows that [K] = 0. Hence K =0 and f is an isomorphism. 0

3.4.2 Let X = X(p, A) and X' = X(p, ') be two weighted projective lines of the same
weight type. The assignement ®o[Ox(Z)] = [Ox/(F)] , 0 < & < ¢, defines an isomorphism
Ko(X) = Ko(X') which preserves the Euler form. We will identify the two Grothendieck
groups by means of this isomorphism. Further, we denote by Ex(X) and Ex(X’) the set of
exceptional sheaves in coh(X) and coh(X’), respectively.

Theorem 3.4.2 There is a bijection ® : Ex(X) — Ex(X') such that [PE] = [E] for all
E € Ex(X).

Proof. Let K and K’ be exceptional sequences corresponding to the canonical tilting
sheaves on X and X/, respectively.

For a braid group element g € B, we define the length as the smallest natural number
[ such that g can be written as a product of [ elements in the generaters o; and their
inverses. We can order the elements (g, )men of By, in such a way that for m; < m, the
length of g, is smaller than or equal to the length of g,,,. Further, we denote by M.,
(resp. M",) the set of exceptional sheaves E on X (resp. E’ on X') with the property that
there exist an index i < m such that E (resp. E') appears in an exceptional sequence of
the form g¢;.K (resp. g;.K').

We define inductively maps ®,, : M, — M. such that ®,|p,,_, = Pm_y and
[®E] = [E] for all E € M,,. ¥ is already given. Assume now that ®,,_, is defined and
E is in My, but not in M,,_,. Then E can be constructed by a left or right mutation
from an exceptional pair (A, B) such that A, B € Mp,_y. In the first case E is defined by
one of the three exact sequences

0 - E - Homx(A,B)@ A— B =0

0 - Homx(A,B) @ A5 B E—=0

0B E—oExti(A,B)®A 0.
The left mutation of the pair (®,,_1 A, @1 B) is of the same type and defines an excep-
tional sheaf E’ on X’ such that [E] = [E']. We define ®,,(E) = E'. If E is given by a
right mutation, we proceed dually. The ®,,’s define a map ® with the required property.
Indeed, @ is surjective, according to the transitivity of the braid group action on the set
of exceptional sequences in coh(X'), and it is injective by the preceding lemma. O

Remark 3.4.3 Similar considerations show that the exceptional objects for a weighted
projective line are independent of the ground field k. m]

3.5 Coprimeness of rank and degree

3.5.1 For an exceptional vector bundle £ on P? the greatest common divisor of rk(E)
and deg (E) is one {103, Corollary 2.1]. This is not true in the situation of a weighted
projective line of arbitrary weight type. However, we will show that for an exceptional
bundle on a hyperelliptic weighted projective line rank and degree are again coprime.
This result will be applied in Chapter 9 to the study of tilting complexes for those curves.

Theorem 3.5.1 Let E be an exceptional sheaf on a hyperelliptic weighted projective line.
Then tk(E) and deg (E) are coprime.

Proof. We prove the theorem by induction on the minimal length ! of a braid group
element g € B, such that E appears in an exceptional sequence of the form ¢g.K, where
K is, as before, an exceptional sequence corresponding to the canonical tilting sheaf.

Since all sheaves of K have rank one, the statement holds true for | = 0. Assume that
{ > 1 and that E is constructed by a left mutation

E[-1] - Hom*(A,B)@ A=+ B> E

from an exceptional pair (A, B) which is contained in ¢g.K for some g € B,, where the
length of g is smaller than [. By induction hypothesis we have ged(rk(A), deg(A)) = 1 and
ged(rk(B), deg (B)) = 1. Since (A, B) is an exceptional pair, we deduce from Corollary
2.3.5 that [E] = [B] — h[A] with

tk(A)  rk(B)
deg (A) deg(B)

Therefore rk(E) = rk(B) — hrk(A) and deg (E) = deg (B) — hdeg(A). Suppose now
that ¢ € 7 divides both rk(£) and deg(E). Then ¢ divides also

tk(E)  rk(A)

deg (E) deg(A) |~ "

As a consequence, ¢ divides both rk(B) and deg (B), and therefore ¢ = 1 or ¢ = —1. The
case that E is constructed by a right mutation is proved by dual arguments. m]

3.5.2 The proof works also for a weighted projective line X of type (2,...,2), t entries,
with ¢ < 4. In this case the result is known and can be shown not involving the transitivity
of the braid group action. In fact, for ¢ < 4 the assertion is an easy consequence of the
shape of the vector bundle component vect(X) and for ¢ = 4 one can apply the telescopic
functors to be defined in chapter 4.

3.5.3 Example. Let X be a weighted projective line of weight type (2,2,2,3). Then
deg (15 O(Z,)) = 8 and rk(7y O(%)) = 2. Moreover, deg (7720) = 780 and rk(1;%0) =
169, hence ged(deg (75720), rk(7720)) = 13. Here 75 denotes the inverse of Auslander-
Reiten-translation in mod(A). Note that rank and degree of the two exceptional vector
bundles above can be calculated in the preprojective component for the algebra Ag (see
Chapter 7).
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Chapter 4

Tubular mutations

4.1 Mutations as derived equivalences for sheaves on
weighted projective lines of genus one

4.1.1 The mutations of pairs considered in Chapter 3 can be considered as functors if
we fix one exceptional object. More precisely let C be a triangulated category and let A
be an exceptional object in C. For an arbitrary object X € C we form the triangle

, Hom*(A, X)® A =3 X — L4(X).

It is proved in [32, 3.4.3] that these triangles are functorial in X, thus yielding a functor
L4:C — C. Observe that £4 is not an equivalence, because it vanishes on A.

If the object A is not exceptional, then we can also consider the triangles above,
however in general it is not clear how to extend the assignment X + £4(X) to a functor.

In this chapter we will investigate mutations with respect to an Auslander-Reiten orbit
of a quasi-simple sheaf for a weighted projective line of tubular type, a particular case
where a functorial extension is possible. These mutations were introduced in [85] and
will be called tubular mutations furtheron.

4.1.2 For a weighted projective line X of arbitrary weight type and for each ¢ € QU {0}
we denote by C, the subcategory of coh(X) consisting of the zero bundle and all semi-stable
sheaves of slope g. As in the case of nonsingular projective curves we have the following
result due to Narashiman and Seshadri [114] (see also [29, Proposition 5.2]).

Proposition 4.1.2 (i) Each C, is an ezact abelian subcategory of coh(X), closed under
extensions.

(i) Each F € C, has finite length in C;. The simple objets in Cy are just the stable
sheaves; in particular End(F) = k if I is stable.

(iti) If F € C, and F' € Cp and Homx(F, F') # 0, then ¢ < ¢ D

4.1.3 Assume now that X is of tubular weight type. The following proposition was
proved by Geigle and Lenzing [29, Theorem 5.6].
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Proposition 4.1.3 (i) Each indecomposable sheaf on X is semistable.

(i1) Each C, is closed under the formation of Auslander-Reiten sequences, in particular
C,(@0) =C,.

(ii1) Each C, is a uniserial category. Accordingly ind(C,) decomposes into Auslander-
Reiten components, which all are tubes of finite rank. m]

Theorem 4.1.4 Let X be a tubular weighted projective line and let U be a T-orbit of
a qtasi-simple sheaf in coh(X). Then there erists an equivalence L : D*(coh(X)) —
D*(coh(X)) and a natural transformation n :id — L such that

P Hom* (U, X) @ U 2% X 1 L(X)

Ueld

is a distinguished triangle for each object X € D*(coh(X)).

Proof. Step 1: Let U be an arbitrary 7-orbit of a quasi-simple sheaf in coh(x). We first
show the existence of a functor L such that L(X) appears in a distinguished triangle as
above.

We consider the functor F : Qcoh(X) — Qcoh(X) defined on objects by

F(X)= @ Hom(U, X)® U
Uel
and the morphism of functors & : F' — idqeon(x) which is given by the canonical maps.
Obviously, F extends to a functor F : K®(Qcoh(X)) — K*(Qcoh(X)) and a extends to
a morphism of functors @ : F — _maxcnor.x: Define T : K*(Qcoh(X)) — Kb(Qcoh(X))
as the mapping cone of @, thus for X* = (X",d") € K*(Qcoh(X)) we get L(X*)" =
F(X™') @ X™ and the differential in L(X*) is given by

—F(d*) 0

. ntl n 7 n+2 n41
a(X™H)  dr CFP(XMY)e Xt o F(X") e X

Clearly L is a functor.

Let T be the full subcategory of Qcoh(X) consisting of all injective quasi-coherent
sheaves and let C®(T) (resp. K*(T)) be the full subcategory of K*(Qcoh(X 3 (resp.
K*(Qcoh(X))) formed by all complexes of objects from Z. Moreover, let \mnoix; ) be the
full subcategory of K*(Z) having all cohomology sheaves in coh(X).

We show that if I°® € K2, x)(Z), then L(I°) € Kby x)(Qeoh(X)). Let I* = (I",d") €
RSZx.A ). Tt is sufficient to show that F(1°) has coherent cohomology. We write B* =
im(d"1), Z"* = ker(d"), H* = Z"/B" and put F'(X) = @®°_, Ext} (170, X) ® 770 for
X € coh(X).

Observe that F(Z") = ker(F(d")), F'(B") = 0 and F(H") = F(Z")/F(B") for all

n € Z. Now, for the exact sequence
0 = F(B™)/im(F(d"™")) = F(Z™)/im(F(d"™")) = F(Z")/F(B") -

we get that the end terms F(B™)/im(F(d"~")) = F/(Z"~') = F'(H" ') and F(Z™)/F(B")
are coherent, therefore the middle term is coherent, too. lence the complex F(I° v has
coherent cohomology.
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Thus, by restriction we obtain a functor L' : FS%:ANV Six;@no_; )). Now, the

composition >8E5AHV EEEAQS_; ) = @Wozlﬂencixd is an equivalence, let ¢
be a quasi-inverse of £ 07. Let us consider the composition

D) (QEOh(X)) 5 K2 () 2 Kl (Qeoh(X)) 5 D) (Qeoh(X)).
Identifying D*(coh(X)) with @Pri?@noix; we get a functor L : D*(coh(X)) — D*(coh(X)).

Moreover, the obvious natural transformation idxe(Qcon(x)) = F induces a natural trans-
formation 7 : idpe(conx)) = L. The existence of triangles as stated in the theorem is a
consequence of the definition of L. .

Step 2: Next we show that L = Ly is an equivalence in the special case that U is
the 7-orbit of the structure sheaf. For this we apply Beilinson’s lemma [9], stating
that if G : C = D is an exact functor between triangulated categories and if X’
{Xi}ier is a generating system (in the sense of triangulated categories) of C such 2::

{G(X:)}ier is a generating system of D and G induces equivalences Hom*(X;, X;) =

Hom®(G(X;), G(X;)) for all X;, X; € X, then G is an equivalence.

Now, if 0 — I} - I3 =44 I3 —» 0 is an exact sequence in C*(Qcoh(X)) with terms

in OSZ“:AHY then the complex 0 — L'(I}) — Y gy (I3) — . L'(I3) — 0 is a pointwise
split exact sequence. Interpreting the homotopy categories as Frobenius categories, it
follows from [39, Chapter 1, Lemma 2.8] that L’ and hence L is an exact functor of
triangulated categories.

Consider the generating system {O, {Si;}i=1,...t, j=0,...pi-1} Where the S; ; are the sim-
ple sheaves concentrated at the exceptional points. From the exact sequences

0= 0@UT) =20+ 1)T) = Si;—0

we conclude that the only non-vanishing Ext-spaces between the sheaves of the gener-
ating system are Homx(O,Sip-1) = k, Extx(Si0, O0) = k, Ext}(S:;,Sij-1) = k and
Homy(X,X) = k for X = O or S;;. Choosing injective resolutions for O and S, ; one
easily calculates that L(©Q) = w™! and L(S;;) & O(—Zi+ (pi — 1 — j)@)(1]. It follows that

Homx (L(O), A ?L: = k,
Homx (L(Sio), L(O)[1]) = k&,
Homx (L(S;,;), A i-n)[l]) =k,
Homx(L(0), L(0)) = &,
Homx(L(S;,), L(Si3)) = K,

and that the other Hom-spaces vanish. Furthermore, it is easy to check that L induces
non-zero maps and therefore isomorphisms between the corresponding one- dimensional
Hom-spaces. Finally, L(O) and the L(S;;) form again a generating system. Thus by
Beilinson’s lemma, L is an equivalence.

Step 3: Now we show that L = Ly is an equivalence in case that U is the 7-orbit of a
simple sheaf of finite length. We proceed similarly as in the previous step.

Case (a) U is the T orbit of a simple sheaf S;o concentrated at an exceptional point
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Choosing again injective resolutions one easily checks that L(O) = O(%;), L(S;;) =
Sijy1 and L(Si;) = Sy for i # ¢ and that L induces isomorphisms between those
one-dimensional Hom-spaces, which do not vanish.

Case (b) U is the T orbit of a simple sheaf S concentrated at an ordinary point.

In this case it follows easily that L(Q) & O(¢) and L(S;;) = Si; for all 7,5 and
proceeds as before.

Step 4: In order to prove the theorem in the general case we apply the method of
telescopic functors developed in [74, Section 4]. The proof will be finished in the next
section.

4.2 Telescopic functors

We will give a short outline of the application of tubular mutations to the classification of
indecomposable sheaves on a weighted projective line of genus one [74]. For corresponding
K-theoretical results we refer to [74] and [70].

4.2.1 Let X be a weighted projective line of genus one. Denote by L a tubular mutation
with respect to the T-orbit of the structure sheaf and by R a quasi-inverse functor of L.
Then we have triangles

P 5
R(X) — X =3 @) DHom*(X,7'0) ® 'O

i=1

for all X € D*(coh(X)). Further, let S be a tubular mutation with respect to the r-orbit
of 810 and S~! a quasi-inverse functor of S.

4.2.2 The following corollary follows easily from Theorem 4.1.4 invoking the semi-
stability of indecomposable sheaves. It indicates how to calculate a left mutation L with
respect to the T-orbit of the structure sheaf in the abelian category, and shows in partic-
ular that in this case L coincides on indecomposable sheaves X such that 0 < p(X) <1
with the functor considered in [74].

Corollary 4.2.2 Assume that X is a weighted projective line of genus one. Let X be an
indecomposable sheaf on X and

P i
@W Homx (770, X)® 770 =5 X

i=1

the canonical map.

(a) If u(X) > 1, then L(X) = ker(can)[1].

(b) If 0 < p(X) <1, then L(X) = coker(can).

(¢) If (X)) =0, then L(X) = 77 (X) provided X is in the Auslander-Reiten component
of O, and L(X) £ X otherwise.

(d) If p(X) <0, then L(X) coincides with the middle term of the universal extension
of X with respect to the Auslander-Reiten orbit of O.

4.2.3 Using the fact that R is a quasi-inverse functor of L, we deduce the dual result.

Corollary 4.2.3 Assume that X is a weighted projective line of genus one. Let X be an
indecomposable sheaf on X and

P - .
X =5 @D DHomk (X, 770) @ 770
i=1

the co-canonical map.

(a) If p(X) < =1, then R(X) = coker(can)[-1].

(b) If =1 < pu(X) <0, then R(X) = ker(can).

(¢) If u(X) =0, then R(X) = 7(X) provided X is in the Auslander-Reiten component
of O, and R(X) = X otherwise.

(d) If p(X) > 0, then R(X) coincides with the middle term of the co-universal exten-
sion of X with respect to the Auslander-Reiten orbit of O. O

4.2.4 According to Theorem 4.1.4 and Corollaries 4.2.2 and 4.2.3 we obtain

Corollary 4.2.4 The tubular mutations

L : D(coh(X)) = D*(coh(X)) and R: Db(coh(X)) = Db(coh(X))

induce equivalences

Ly:C, =5C¢ and R, :C, S5y
= T+a

[m]

4.2.5 For explicit calculations the following combinatorial description of the positive
rationals [74] is useful.

Proposition 4.2.5 There are natural bijections between the following four sets:

(7) The set Q4 of all rationals q¢ > 0.

(ii) The semigroup SL(2,N) of all 2 x 2-matrices of determinant one with entries in
N.

(211) The free semigroup F{ X, X2} in two letters Xy, X,.

(iv) The binary tree T. o

Proof. (a) The morphism of semigroups

11 10
0o 1) Xl

ﬁ“ﬂﬁxuq\/\nwlv.m‘N\HNJZv_ X, —
is an isomorphism.
(b) The semigroup SL(2,N) acts on Q4 = {q € @, ¢ > 0} by linear fractional trans-

formations
a b ag+b

c d .nHS+n..
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The mapping
¥ :SL(2,N) = Q4, uw—ru.l

is a bijection.

(¢) The graph I of the semigroup I = F{X}, X2} (with respect to the generators X,,
X,) is the oriented graph whose vertices are the elements of F, i.e.the words in X;, X,.
Further, as depicted below

Xiw Xow

for each vertex w there are exactly two arrows starting at w, one labeled X; from w to
X,w, the other labeled X; from w to X;w. Obviously, I is the binary tree with root 1. O

By means of the bijection ¥ o p : F{X;, X3} = Q4, w, — ¢, we can define on the
positive rationals the structure of a free semigroup (Q4, ) in the generators X; = 2 and
Xz = 1/2 such that

— 1 is the neutral element,

—1/2xq=¢q/(1 +9),

—2xq=1+44q.

In this setting each ¢ € Q4 has a representation (unique up to factors equal to one)

g =(ar *1/by) * (az* 1/by) % -+ * (an x 1/b,),

=

where all a;, b; are integers > 1.

Theorem 4.2.6 Assume that X is a weighted projective line a\@a:mm one. Then, for each
4,9' € QU {00}, there is an equivalence @y, : D*(coh(X)) — D*(coh(X)) such that Cq is
mapped to Cyr. Moreover, these functors satisfy the conditions ®gug = ®gu g 0 g and

®,, = Id.

Proof. Let ¢ € Q; and let w, be the corresponding word in F{X;, X;} under the isomor-
phism established 4.2.5. Define ®,,,, = wy(S,R) o R:Coo = C1 = C,.

For q € Q,q < 0, choose n € Z such that ¢+ n € Q4 and define @, = 5™ 0 By 00,
this is independent of the choice of n.

Finally, for ¢,q' € QU {co} define g = ®p1 00, 0 @71 . Then, by construction, all
properties are easily verified. ]

We refer to the functors of the theorem as telescopic functors. Observe that they are
globally defined, in contrast to the telescopic functors considered in [74].

4.2.7 Since Cy coincides with the category of finite length sheaves cohg(X) and is there-
fore explicitly known, we obtain a constructive description of all indecomposable sheaves
on a weighted projective line X of genus one. In particular each indecomposable sheaf
on X is uniquely determined by the following data: the slope ¢, a point A on X, a number
i € 2/p(A\)Z, where p()) denotes the rank of the tube of finite length sheaves concentrated
at A, and the quasi-length I € N.
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4.2.8 We continue the proof of Theorem 4.1.4. It remains to show that for each 7-orbit
U, of a quasi-simple sheaf of slope ¢ there is an equivalence Ly, such that

P Hom* (U, X))@ U 2% X 2% L(X)

Ue€ll

is a distinguished triangle for each object X € D*(coh(X)).

Denote by U, the image of U, under ¢, and by L, the corresponding tubular
mutation. Then the equivalence ®, o 0 Ly, 0 @4 satisfies the assertion which finishes
the proof of the theorem. u]

4.2.9 The idea of tubular mutations goes back to Atiyah [3] who classified the indecom-
posable vector bundles on a nonsingular elliptic curve Y (compare [67]). Using modern ter-
minology, Atiyah’s classification can be described as follows. The Auslander-Reiten quiver
coh(Y) consists of homogeneous tubes, one for each point of Y. Similarly as in 4.1.4, for
each quasi-simple sheaf S in coh(Y) there is an equivalence L : D*(coh(Y)) =5 Db(coh(Y))
such that

Hom®(S,X)®8 &8 § Ly L(X)

is a distinguished triangle for each object X € D*(coh(Y)) [85]. Then telescopic functors
relating the categories C; of semi-stable sheaves on Y, for each ¢ € Q, to the category of
finite length sheaves cohg(Y), can be defined as in the case of weighted projective lines of
genus one.

On the other hand, in Ringel’s classification of modules over a tubular algebra the role
of the equivalences R and S is played by certain functors defined individually for each
weight type by suitable tilting modules, the so-called shrinking functors.

4.3 Automorphisms of the derived category

Tubular mutations allow to investigate the automorphism group of the derived category
of coherent sheaves for a weighted projective line of genus one. We present here the main
results and refer to the forthcoming joint paper with Lenzing [76] for details. Automor-
phism groups of derived categories of coherent sheaves for some classical varieties were

described by Bondal and Orlov [13].

4.3.1 We first assume that X is a weighted projective line of arbitrary weight type.

Definition 4.3.1 An automorphisms of D*(coh(X)) is an ezact functor D*(coh(X)) —
D*(coh(X)) which is an equivalence. The automorphism group Aut(D(coh(X))) consists
of classes, with respect to equivalence of functors, of automorphisms of D*(coh(X)).

An automorphisms of D?(coh(X)) sending coh(X) to coh(X) and fizing O is called an
automorphism of X. The subgroup of Aut(D*(coh(X))) consisting of all automorphisms of
X is denoted by Aut(X).

Recall that the Picard group Pic(X) of X can be identified with the grading group
L(p) and that the torsion group tL(p) consists of all elements of L(p) of degree zero
(see 2.2.2). Therefore, this group can be interpreted as the group of line bundles on X of
degree zero and it is denoted by Pico(X).
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Proposition 4.3.2 The automorphism group Aut(X) of X is isomorphic to the subgroup
of automorphisms of P!(k), preserving weights. In particular, Aut(X) is finite if X has at
least three exceptional points. O

Theorem 4.3.3 The group of rank preserving nicScﬁ_ﬁimsm (up to sign) has the form

) (Z x Pic(X)) x Aut(X).

If X has at least three exceptional points, then this group is finitely presented, and
generators and relations can be explicitly given.

Moreover, if the genus of X is different from one, then each automorphism is rank
preserving (up to sign). 0

4.3.4 We now assume that X is of tubular type. In this case the automorphisms R and
S defined in 4.2.1 satisfy the relation

RST'R=S"'RS™.

Furthermore, it can be shown that the subgroup of Aut(D*(coh(X))) generated by R and
S is isomorphic to the braid group Bs.

Theorem 4.3.4 Let X be a weighted projective line of genus one. Then the automorphism
group Aut(Db(coh(X))) is isomorhic to

(Pico(X) & Aut(X)) x Bs.

In particular this group is finitely presented.

Moreover, the telescopic functors of the form @, o, provide a natural bijection between
the set of left cosets gU in Aut(D*(coh(X))) modulo the subgroup U of rank preserving
automorphisms (up to sign) and the set QU {oo}. u}

Also for these groups explicit presentations by generators and relations can be given.
We emphasize that the automorphism group Aut(X) depends on the weight sequence
and in the case of weight type (2,2,2,2) also on the parameter sequence. In particular,
it follows from 4.3.2 that Aut(X) is isomorphic to the symmetric group S; (resp. S3)
if X is of type (3,3,3) (resp. (2,4,4)), and is trivial if X is of type (2,3,6). If X is
of weight type (2,2,2,2) we can assume that the parameter sequence X is of the form
(00,0,1,X) for some A € k, A ¢ {0,1}. Then the group Aut(X) depends only on the
j-invariant, j = Mmﬁ“ﬁmuﬁ%v of X. Explicit calculations show that Aut(X) is isomorphic
to the alternating group A, in case j = 0, to the dihedral group Dy in case j = 1728 and
to the Klein fours group otherwise.

Chapter 5

Twisted mutations

Throughout this chapter X denotes a weighted projective line of tubular type. We will
study exceptional pairs (A, B) of stable exceptional objects in D*(coh(X)) of the same 7-
order such that there are morphisms from A to B, but not from A to the Auslander-Reiten
translates of B. In this case the dimension of the vector space Homp(A, B) can be cal-
culated using the Riemann-Roch formula. Combining the mutations of exceptional pairs
with the Auslander-Reiten translation we define a new variant of mutations, which can
be used for constructing the stable exceptional sheaves by starting with pairs consisting
of a line bundle and a stable exceptional finite length sheaf.

We will interpret this kind of mutations as action of the braid group B; on the set
of exceptional pairs having some special properties. This approach does not work in the
domestic and in the wild case, where for the construction of the exceptional objects an
action of the bigger braid group B,, n = rk(Ko(X), is needed (see Chapter 4). In the
tubular case, however, we get an alternative method at least for the stable exceptional
sheaves. In particular, in case the weight type is (2,2,2,2) this produces all exceptional
objects. A similar concept of mutations of exceptional pairs for coherent sheaves on
nonsingular elliptic curves was studied by Kuleshov [67].

5.1 Admissible exceptional pairs for tubular weighted
projective lines

5.1.1 An exceptional object A in D?(coh(X)) for a tubular weighted projective line X
is of finite T-order which equals the rank of the tube (in the sense of [100]) of A. We
will denote this number by p = p(A). Note that p divides p. We know from 4.1.2 that
the stable sheaves on X coincide with the quasi-simple ones. An indecomposable object
A € D¥(coh(X)) of the form A = E[i], where E is a stable in coh(X) and i € Z, is said to
be stable, too.

Definition 5.1.1 A pair (A, B) of objects in D*(coh(X)) is called an admissible excep-
tional pair if it satisfies the following conditions:
(i) A and B are exceptional and stable and of the same T-order p.

(i1) Homp(A, B) # 0.
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(iii) Homp(A, 77 B) = 0 if p does not divide j.
An admissible exceptional pair (A, B) with dimgHomp(A, B) = m is said to be an
m-ezceptional pair.

Here 7 denotes the Auslander-Reiten translation in D*(coh(X)).

Lemma 5.1.2 Let (A, B) be an admissible exceptional pair in D*(coh(X)). Then

(1) Homp(B, A[s]) = 0 for s € Z, thus (A, B) is an ezceptional pair in the sense of
3.1.1.

(it) Homp(A, B[s]) = 0 for s # 0.

(iii) Homp(A, 7' B[s]) = 0 for s € Z, provided p does not divide j.

Proof. Up to shift in D?(coh(X)) we have one of the following two cases.

(a) A, B € coh(X) and p(A) < u(B).

(b) A € coh(X), B € coh(X)[1] and p(A) > p(B).

In the case (a) we infer Homx (B, A) = 0, by stability, and ExtX (B, A) & Homx(A, 7x B)
=0, by Serre duality and condition (iii) of the definition. This proves (i). Assertion (ii)
follows from Exty(A, B) = Homx(B,7A) = 0 using again the fact that A and B are
stable. Furthermore, Exty(r/A, B) = 0, for all j € Z, and therefore (iii) is a consequence
of condition (iii) of the definition.

In the case (b) the lemma is proved by similar arguments, the detailed verification is

left to the reader. 0

tk(A) rk(B)
deg(A) deg(B)
Furthermore, we denote by P,, the set of m-exceptional pairs in D*(coh(X)) and set

5.1.3 For an admissible exceptional pair (A, B) we write M4 p =

M(Pr) = {Map| (A, B) € Pn}.
Lemma 5.1.3 Let (A, B) be an m-exzceptional pair. If A and B have T-order p, then

2. \Mup|=m.
P

Proof. Riemann-Roch’s theorem and Lemma 5.1.2 imply

p-1
IMan| =X(A,B) = Y x(+'4, B) = w - dimHomp (A, B).
=0

Proposition 5.1.4 Let (A, B) be an m-exceptional pair of objects of T-order p. Then
(i) p=p.
(11) m < 2. Moreover, if m = 2 then X is of weight type (2,2,2,2).
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Proof. (i) Assume to the contrary that (A, B) is an m-exceptional pair such that p < p.
Applying an automorphism @ € Aut(D*(coh(X))) we obtain an m-exceptional pair (C,S),
where S is a simple exceptional sheaf of finite length and C'is a vector bundle on X. Now,
Muw..u__i.g = ¥7_,[r? D] for some indecomposable bundle D having maximal 7-order and
the same slope as C. It follows that p-rk(C) = p - rk(D), and consequently E divides
rk(C).

On the other hand C can be considered as an exceptional vector bundle in the perpen-
dicular category +{r8,...,7°71S}, which is equivalent to a category of sheaves coh(X')
for some weighted projective line X’. In any case, under the assumption p < p, the curve
X' is of weight type (p1,p2). By a variant of Grothendieck’s theorem (see [57, Chapter VI,
§21]) we conclude rk(C') = 1. This gives a contradiction and proves (i).

tk(C) 0
deg(C) 1
we deduce that rk(C') = m. Using the same argument as above, we see that the curve X’
cannot be of weight type (pi,pz) provided m > 1. Hence the only possibility for m > 1
is m = 2, and in this case X is of type (2,2,2,2), accordingly X' is of type (2,2,2). This
proves (ii). ]

(i1) Keeping the notations of (i), we have M¢s = . From Lemma 5.1.3

5.1.5 Examples (i) For an arbitrary tubular weighted projective line the pair (O, S;,-1)
is an 1-exceptional pair.

(ii) Let X be of weighted type (2,2,2,2). Then (O,0(¢)) is a 2-exceptional pair. The
11
0 2

(iii) Let X be of weighted type (2,2,2,2). Denote by E; the middle term of a non-split
exact sequence of the form

corresponding matrix is

02 w— B = O(F) - 0.

20

Then (E;, S;p) is a 2-exceptional pair, for 7 = 1,...,4, with matrix 11 )

5.2 Twisted mutations of admissible exceptional pairs

5.2.1 Recall from 3.2.1 that for an exceptional pair (A, B) in D*(coh(X)) the left and
right mutations are given by triangles

(A) L4B[-1] — Hom*(A,B)® A <5 B —s L4B,
(A,) RpA — A <% DHom*(4, B) @ B — RpA[l]

If (A, B) is even m-exceptional, then (B,7A) and (77 B, A) are exceptional pairs, by
Lemma 5.1.2 (iii) and Serre duality, and we can consider the exceptional pairs (Lg(7A), B)

and (A, R4(77 B)). We define
fi(A,B) = (A, Ra(17B)), fa(A, B) = (Lp(7A), B),
fTY(A,B) = (A,7(LaB)), f;'(A,B)=(r"(RpA),B)
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Lemma 5.2.1 (i) If (A, B) is an m-ezceptional pair then so are fi(A,B), fa(A,B),
fT'(A, B) and f;'(A, B).
(ii) fi and f7' [resp. fy and f2' ] are mutually inverse each other.

Proof. (i) We give the proof only for f{'(A, B) = (A,7(L4B)), the other cases are left
to the reader.

The left mutation of the exceptional pair (A, B) is given by the distinguished triangle
(A;) and, using the Auslander-Reiten-translation, we get a triangle

(A" 7(LaB)[-1] — Hom*(A,B)® 7A — 7B — 7(L4B).

Let p be the T-order of A and B. Applying the functor Hom(A, —) to the triangle (A')
and using that Hom(A, 7B) = 0 = Hom(A, 7B[1]) by 5.1.2, we see that Hom(A, 7(£4B))
is m-dimensional.

Further, application of Hom(7" A, —) to (A’) gives, forn =2,...,p — 1,
Hom(7""'A, L4 B) & Hom(r" A, 7L4B) = 0, because Hom(r""! A, B) = 0 and
Hom(7""!A, A[1]) = 0 by assumption. Moreover, in the special case n = 1 we obtain
an exact sequence Hom(7 A, Hom(A, B) ® TA) & Hom(7A,7B) = Hom(7A,7(L4B) —
Hom(7 A, Hom(A, B) @ 7 A[l]) = 0. The map f is an isomorphism, because it is induced
from the canonical map. Hence we get also Hom(7A,7L4B) = 0.

The object L4 B is defined by a mutation of an exceptional pair, hence L4 B is ex-
ceptional and 7(L£4B) has the same property. It remains to show that 7(£4B) is quasi-
simple and of 7-order p. For this it is sufficient to prove that Hom(r"L4B,L4B) = 0 for
n=1,...,p— 1L

We first apply the functor Hom(7"B, —) to the triangle (A;). Invoking the duality
Hom(7" B, Hom(A, B) ® A[l]) & Hom(A, B) ® DHom(A, r"*! B) we see that
Hom(7"B,L4B) = 0, for n = 1,...,p — 2, and Hom(r*~!B,£4B) = DHom(A, B) ®
Hom(A, B). .

Similarly, one easily proves that Hom(7"A,L4B) = 0, for n = 1,...,p — 2, and
Hom(7°7'A, L4 B) = Hom(A, B).

Now we apply the functor Hom(—, £4B) to the distinguished triangle

)] "(L4B)[~1] — Hom(A,B)® T"A — "B — (L4 B).

Forn=1,...,p— 2 we obtain
0 = Hom(Hom(A, B)®1"A[l], L4B) = Hom(7"L4B,L4B) = Hom(m" B, L4 B) = 0, and
consequently Hom(7" L4 B, L4B) = 0. Finally, for n = p — 1 we get the exact sequence

0— :oB?nLh\»m,hymv — Hom(7°7' B, L4B) % Hom(Hom(A, B)®1"™'A,LaB) — 0.

Both terms Hom(7*~' B, L4 B) and Hom(Hom(A, B)®@7°~' A, L 4 B) can be identified with
DHom(A, B)®@Hom(A, B), hence g is an isomorphism. It follows that Hom(7°='L4 B, L4 B)
= 0, and consequently £4B is quasi-simple and of 7-order p. Thus (A,7(L4B)) is an

m-exceptional pair.

Note that we did not have to use Proposition 5.1.4.

(ii) We check at once that fi(f; (A, B)) = fi(A,7(LaB)) = (A,Ra(t~(1(L4B)))) =
(A, RAL4B) = (A, B) for each m-exceptional pair (A, B), thus f; o f7' = id. The other
identities are proved similarly. u]
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5.2.2 According to Lemma 5.2.1 we can consider f; and f; as bijections of P,,. Let
us denote by F,, the subgroup of the symmetric group of P,, generated by f, and f,.
Observe that f; and f, induce isomorphisms of Ko(X) x Ko(X) given by multiplications
from the right with
1 m T 0
0 7- and m 1

respectively.
Lemma 5.2.2 Form =1 the identity ff;"' fi = fy ' fifs" holds.

Proof. mmsnm,

1 1 ™ 0 1 _ 0 7\ _ ™ 0 11 ™ 0

0 -~ 1 0~ )\ -2 0 )" \-r 1 0 7 -~ 1)
Ui f7' f1(A, B)) and [f5 f1f5' (A, B)] coincide up to translations in the derived category.
By 3.4.1, an exceptional object is uniquely determined, up to translation, by its class in
the Grothendieck group. Through case by case inspection it is also easy to verify that

fif'fi and f;'fif5! send each pair to pairs such that the corresponding objects are in
the same copy of coh(X). a

5.2.3 There is a group homomorphism
€m : Fn > SL(2,2)

defined on the generators of Iy, by €,(/f1) = M ﬂw and €,(f2) = u: Mu . Note
that €q(g) = |M3| - |(Ma,).g| for each m-exceptional pair (A, B).

Denote by G,, the image of ¢,,. By classical results in group theory [96] we have

Proposition 5.2.3 (1) G, = SL(2,7).
1 2 10

(i1) G; is freely generated by 01 and 9 1) Furthermore,

Qn = * Ry € rm«N\AMgNV_ a =a22 = wAEOQ N:q a2 =a21 = OAEO& Mvw
azy G2 '

5.2.4 As a consequence we obtain

Proposition 5.2.4 (i) F} is isomorphic to the braid group Bj.
(ii) Fy is a free group generated by fy and f. =]

Proof. (i) Denote by T' the automorphism D*(coh(X)) — D*(coh(X)), given by the trans-
lation X +— X[1]. It is easily seen that (fofi')? = T3 thus (f2fi')® = T?r% By
Lemma 5.2.2, there is a surjective group homomorphism ¢ : By — (f1, f2) mapping the

generators o; and oy of Bs to f; and f;', respectively. Further, we have a surjective

1 0
group homomorphism k : By — SL(2,Z) mapping the generators o, and o, to 11
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and w ” . The kernel of h is isomorphic to Z and generated by (o20)®, which follows

from [112] and [19].
We thus obtain a commutative diagram with exact rows

1 — 22 ((001)®) — By 25 SL(2,7) — 1
. by Ly I

1 — N — K = SL(2,7) — L

Since ¢ is an epimorphism, this holds also for ¥’. Therefore N is infinite cyclic which
implies that ', hence 1 is an isomorphism.
(ii) follows from Proposition 5.2.3. 0

5.2.5 We will study the actions
P x Fy = P
for an arbitrary tubular weighted projective line and
Py x Fy > P
for a weighted projective line of type (2,2,2,2). Observe that the induced actions
M(Pi) x Gy = M(P1) and  M(Py) x Gy = M(P2)
are given by multiplication of matrices, and €( f;) and €( f;) act as multiplications with

1 m d 1 0
01 an m 1)’
respectively, from orm,am.r.:
Note further that
M(Py) = SL(2,2)

and

ror

EA\UNV”AEH d d

€ GL(2,7)| |M| =2, ged(r,d) = 1, ged(r',d') = 1},

as is easy to check by applying the telescopic functors of Chapter 4 and Theorem 3.5.
Obviously, we also have actions, for m = 1,2,

Aut(DH(coh(X))) X P = Pr, (8, (A, B)) > (94, D B).

It is clear that the automorphisms R and S (see Chapter 4) act on the level of M(P,,) as
multiplications from the left with
11 10

01 and 11

respectively. Moreover, it is easy to see that, considered as bijections of P,,, the auto-
morphisms commute with the elements of F,.

5.2.6 We recall from [74, 2.7] the notion of the determinant homomorphism for a
weighted projective line.

Denote by U; the uniserial category of coherent sheaves concentrated at the exceptional
point A, i =1,...,t. Then the inclusion U; — coh(X) induces an embedding Ko(i4;) —
Ko(X). If further h : Ko(X) = G is a homomorphism into a group G, with the property
h(©) = 0 then h is uniquely determined by a family of homomorphisms h; : Ko() = G
such that hy(w) = ... = hy(w), where w denotes the class of a simple sheaf concentrated
at an ordinary point. The determinant homomorphism det : Ko(X) — L(p) is defined
by requiring that each simple object from U; is mapped to &; € L(p) and det(O) = 0.
Note that the degree homomorphism deg : Ko(X) — Z arises as the composition of the
determinant homomorphism with the degree map ¢ : L(p) — Z that kills the torsion
tL(p) of L(p).

B

5.2.7 For a l-exceptional pair (A, B) in D*(coh(X)) with My g = M> dn | Ve denote
4 dp

(A,B)=r4-detB — rg - detA.

According to 5.1.4 we have §(Det(A, B)) = 1. We will identify the groups L(p) and
Pic(X), thus Det(A, B) can be considered as a line bundle of degree one. The cyclic group
generated by 7 acts on the set of line bundles of degree one by shift because X is tubular.
We denote by [E]. the class of a bundle E under this action.

Lemma 5.2.7 (i) [Det(A, B).g], = [Det(A, B)], for all g € F.
(ii) [Det(A(Z), B(Z))], = [Det(A, B)], for each 7 € L(p).

Proof. (i) It is sufficient to show the equality for the generators of Fy. We check this only
for g = f7!, in the same manner the assertion is proved for fi, fa, L

Since dim;Hom(A, B) = 1 we have a triangle £L4B[-1] — A =% B — L4 B, which
gives rise to the formulas tk(£4B) = rg — ra, and det(L4B) = detB — detA. Then

Il

Det((A, B).f{) Det(A,7L4B)

ra-det(LaB(&)) + (ra —rp) - detA

ra-(det(LaB)+ (rg —7a) &)+ (ra —rB) - detA

= r4-(detB —detA) +ra(rg —ra) @+ (r4 —7rp) - detA

-

= Det(A,B) +ra(rp —ra) &

The proof for (ii) is similar. o

ﬁnovOm;._osm.w.mhm:}mvvmnTmunmw:e:iwn?eav_on}m:aH_Gfm..:f38:
there are elements 7 € tL(p) and g € Fy such that (A, B) = (O(&5), Sip,-1(F)).9-

Proof. Let (A, B) € P1. Applying Proposition 5.2.3 (i), the matrix My, g can be written

10 2 .
as a product u of matrices M; = w w , My = 11 and their inverses. Replacing
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in u the factors My, My, M{' and M;' by fi, fo, fi'* and f;', respectively, we obtain
an element g € F such that (A, B).g™! is a 1-exceptional pair (L,S) with matrix My s =

L0 . Thus L = O(Z) is a line bundle and S is a simple exceptional finite length sheaf.

01
Then (A, B) = (O(%),8(~7)(f)).g. Further by Lemma 5.2.7, [Det(A, B)], = [O(&)],
implies [Det(O, S(—7))]. = [O(Z))],, therefore S(—7)) = Sip-1- O

5.2.9 We consider Pic(X), Pico(X), Aut(X) and F; as subgroups of the symmetric group
of Py. It follows from 4.3.3 that the semidirect product Pico(X) x Aut(X) can be identified
with the group of rank and degree preserving automorphisms of coh(X).

Lemma 5.2.9 The subgroup generated by Pico(X) x Aut(X) and F\ is a direct product of
these two subgroups.

Proof. Since f; and f, commute with automorphisms of D*(coh(X)), it is sufficient to
show that (Pico(X) x Aut(X)) N Fy = {1}. Assume that g € (Pico(X)x Aut(X))N Fy. Then

e(g) = w w , hence g = (fof")%" for some n € Z (see 5.2.4). But (A4, B).ff7! =
T?r%(A, B), which gives that n = 0. Consequently g = 1. O

Now, Proposition 5.2.8 implies that the orbits in P; under the action of Pico(X) x Fy
are in 1-1-correspondence with the the set {O(Z;), ¢ = 1,...t}. Allowing, in addition,
geometrical automorphisms we obtain .

Theorem 5.2.9 The group (Pico(X) x Aut(X)) x Fy acts transitively on the set of 1-
exceptional pairs on a tubular weighted projective line X. ) O

5.2.10 In case X is of weight type (2,2,2,2) we do not get a transitive group action on
P,. However, it is easily seen that in this situation for each 2-exceptional pair (A, B)
T4 TB
dy dp
this it follows that under the action of the group (Pic(X) x Aut(X)) x F; on P, there are
exactly 3 orbits, containing pairs with matrices

there exists an element g € F, such that M4 ), = with 74 + 75 = 2. From

20 11 0 2
1 1)"\o0 1)\ -11)

respectively.

The 1-exceptional and 2-exceptional pairs on weighted projective lines of weight type
(2,2,2,2) will occur as partial tilting complexes for hyperelliptic weighted projective lines
in Chapter 9.

Chapter 6

On the number of exceptional vector
bundles

For a wild weighted projective line X the exceptional vector bundles are the objects of
certain components in the Auslander-Reiten quiver of coh(X) for which the quasi-length
is smaller than some integer. It follows from 3.4.1 that for a weighted projective line there
are countably many exceptional sheaves. In this chapter we will show that there are only
finitely many exceptional vector bundles of given rank and degree, moreover we give a
bound for this number which is polynomial in the weights.

We are further interested in those exceptional vector bundles on X which cannot be
realized as exceptional bundles on weighted projective lines of smaller weight type by
forming perpendicular categories to simple exceptional finite length sheaves. This leads to
the concept of an omnipresent exceptional vector bundle. We will prove that omnipresent
exceptional vector bundles in the wild and in the tubular case always exist. Moreover,
for a hyperelliptic weighted projective line we will study omnipresent exceptional vector
bundles of minimal rank.

6.1 Equations and inequations for exceptional bun-
dles

6.1.1 Let X = X(p, A) be a weighted projective line of weight type p = (p1,p2,..-,pt).
Throughout this chapter we assume that all p; > 2. For an exceptional vector bundle E
on X we define natural numbers

ri; = ri;j(E) = dimgHomx(E, S; ;), 1=1,...,1t, j=0,1,....,;— 1,

where the S;; are the exceptional simple sheaves defined in 2.2.5. Moreover, we denote
by S a simple finite length sheaf concentrated at a fixed ordinary point. Observe that the
rank r of E is equals dimyHomy(E,S).

The classes [O(Z)], 0 < & < & of the indecomposable summands of the canonical
tilting sheaf form a basis of the Grothendieck group Ko(X). It is easy to see that [O],
[Sijl,i=1,...,t,7=0,1,...,p; — 2, [S], form a basis of Ko(X), as well.
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Thus, the class [E] of E can be written in the form
[E] = klO]+ 3 ki jlOGE)] + k]O(D)]

=1,

Il

no[O] + "MU ni,i[Si] + ns(S)

3=0,..,p =2

for uniquely determined integers ko, ki j, ke, 1o, 124 j, N

The following equations hold:

(a) ng = 7.

A&v \n...u.”ﬂ..hf.f s.”r...,? .w.”—q...;u_.nlw,

Anv Tij = Nij — Nij41, ~.“~,..J? Q‘HO,...,P|M. Ammp Nipi-1 HOV

A&v N =7ij+Tij41+ -+ Tip-2, t=1,...,4 7=0,...,p; — 2.

Indeed, assertion (a) is an immediate consequence of the additivity of the rank func-
tion. Furthermore, we have r;; = dimiHomx(E,S;;) = x([E],[Si)]) = x(ko|O] +
ki ;[0 T:)] + k[O(S)],[Si;]), therefore (b) follows from the exact sequences of 2.2.5.
Assertion (c) is proved similarly by writing [E] as a linear combination in the second basis
and (d) follows straightforward from (c).

Proposition 6.1.2 Let E be an exceptional vector bundle on a weighted projective line

X. Then
D P > ity — T

i1, i=1,t
3=0,....p; =2 0<5<y'<pi -2

In particular, if X is of weight type (2,...,2), then

2 2
r° 4 MUﬁ_.blw.. rio=1,

i=1,..,t i=1,...,t

Proof. Since E is exceptional, we have x(F, F) = 1. Writing [E] as a linear combination
in the basis containing the simple exceptional sheaves we obtain

x([E], [E]) X(o[O]+ Y- nijlSisl +ns(S], Ol + Y0 nijlSis) + ns(S])

1
1=0,...,p; =2

MM +1

= - MU r(rio+ -

1=1,...,t

= 4 ¥yt
i=1 i=1,.t

1=0,...p; =2 0<3<y'<p, =2

]
Remark. Let Ay be the hereditary algebra such that mod(Ap) is equivalent to the
right perpendicular category Ox(¢)t (see 2.4.3). Denote by Ko(Ao) the Grothendieck
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group for Ag and by U the subgroup of Ko(X) spanned by [O] and the [S;;],i = 1,...,t,j
0,...,pi — 2. Moreover, let ¢ : Ko(Ay) = U be the Z-linear map defined by [Sy]
(0], ¢[S;z] = [Sij-1], where Sp, Sjz, are the simple Ag-modules. Then the proposition
expresses the fact that ¢ is an isomorphism which preserves the Euler form.

6.1.3 let X be a weighted projective line of type (2, ...,2), t entries. In this case we simply
write ; instead of r; o and k; instead of k;;. Thus, for an exceptional vector bundle E we
have

E=k0]+ ¥ KO@) + k0@
i=1,..,t
Observe that k; =r; >0fore=1...,t.
In 6.3 we will need the following result

Lemma 6.1.3 Keeping the notations above the following inequalities hold:
(1) if w(E) >0, then ko <0,
(1) if p(E) < 2, then k. <0,
(1) if p(E) > 1, then —ko > 1; fori=1,...,t.

Proof. (i) We have x([E],[0]) = x(ko|O] + Ziay,.... kilO(F))] + k[O()],[O]) = ko. By
assumption u(E) > 0, hence Homy(E,O) = 0 using the stability of exceptional vector
bundles, see Proposition 2.3.7. Therefore ko = x([E],[0]) = —dimiExty(E,O) < 0.

(ii) One proves by the same method as in (i) that k. = x([O(9)],[E]) =
—dimExtL(O(&), E) < 0.

(i1i) Application of the functor Homy(E, —) to the exact sequence
0= O = OT) = Sip = 0 yields a monomorphism Homx(E, Sio) < Exty(E,0). In
fact, Homx(E, O(Z;)) vanishes, because u(E) > 1 = p(O(Z;)) and both vector bundles
are exceptional, hence stable. Now, r; = dimyHomx (£, S;0) by definition, and (iii) follows
from the fact that —ky = &E»mx&@, 0). 0O

6.2 A bound for the number of exceptional bundles
of fixed rank and degree

Proposition 6.2.1 The number of non-isomorphic exceptional vector bundles of fixed
rank r and degree d on a weighted projective line X = X(p,A) of weight type p =

(p1,p2y ..., pt) is bounded by Alu_Lv . AIELV — Alu.u_v.

pi-1 p2—1 pe—1

Proof. Since [E] = r[O] + ¥ ki ;[O(5%)] + k[O(E)], it follows from 3.4.1 that there is
at most one exceptional vector bundle having the data r, r;;, d (observe that d can be
calculated from the coefficients). Hence for fixed r and d, E is uniquely determined by the
rij. Now the natural numbers r; j satisfy the equations rjo+ri1+...+7p1 = 7. Further,
for each 7 = 1,. .., the number of sequences of non-negative integers (rio, i1, -, ip,~1)

such that 7,04+ ri1 + ...+ 7ip—1 =T equals AJ{_L

i vv which completes the proof u]

Corollary 6.2.2 The number of non-isomorphic exceptional vector bundles of fized rank
7 and degree d on a weighted projective line X is bounded by 2(r + 1)<(Ko(X)=3,
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Proof. All numbers r; ; satisfy 0 < r;; < r. Moreover, according to 6.1.2, for one of the
r;,; there are at most two choices if the others are fixed. u]

Proposition 6.2.3 Let X be a hyperelliptic weighted projective line with t weights.

(i) For each q € Q there is an exceptional vector bundle of slope q.

(i1) The number of non-isomorphic exceptional vector bundles of fized slope q € Q is
bounded by 2(r + 1),

Proof. (i) If X' is a weighted projective line of type (2,...,2), t’ entries, and S a simple
exceptional sheaf, then the perpendicular category 1S is equivalent to a category of co-
herent sheaves coh(X") of weight type (2, ...,2), t" entries. Moreover the exact embedding
coh(X") < coh(X') preserves the rank, and by [30, Chapter 9] in this situation also, the
degree. Thus assertion (i) is a consequence of the fact that for each ¢ € @ there exists an
exceptional vector bundle of slope g for a corresponding tubular weighted projective line
of type (2,2,2,2).

(i1) follows straightforward from Corollary 6.2.2 and Theorem 3.5.1. O

Remark. We note that for a hyperelliptic weighted projective line of type with ¢
weights, the number of non-isomorphic exceptional vector bundles of rank 1 and fixed
degree d is exactly 2!=1. In fact, this number coincides with the number of elements in

Pice(X) = tL(p).

Proposition 6.2.4 Let X be a weighted projective line of arbitrary type. The number of
components in vect(X) containing an exceptional vector bundle of rank r is bounded by

(i) - () - (E) - deg () -

Proof. According to the formula deg (7x F) = deg (E(&)) = deg E + deg (&) - rk(E) there
are, up to 7-translation, deg (&) - r values for the degree of an exceptional bundle on X.
Then the assertion follows from Proposition 6.2.1. m]

6.3 Omnipresent exceptional vector bundles

Definition 6.3.1 We call an exceptional vector bundle E on a weighted projective line X
omnipresent if for each finite length sheaf S there is a nonzero map E — S.

Obviously it is sufficient to require that there is a nonzero map to each simple excep-
tional finite length sheaf. Thus an exceptional vector bundle is omnipresent if and only
if the numbers 7; ; defined in 6.1.1 are nonzero.

Each exceptional vector bundle can be considered as omnipresent on some weighted
projective line. Indeed, assume that F is an exceptional vector bundle on X which is
not omnipresent. Then there is a simple exceptional sheaf S such that Homyx(E,S) = 0,
thus £ belongs to the perpendicular category +*S. Forming the perpendicular category
with respect to all simple finite length sheaves with this property we see that E is an
omnipresent exceptional vector bundle on a weighted projective line of smaller weight
type.
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6.3.2 For a weighted projective line of domestic type an omnipresent exceptional vector
bundle does not necessarily exist, however in the other cases we have

Theorem 6.3.2 Let X be a weighted projective line of wild or tubular weight type. Then
there is an omnipresent exceptional vector bundle.

Proof. Let E be an arbitrary exceptional vector bundle on X. Assume that E is not
omnipresent, thus Homy (E, §) = 0 for some simple exceptional finite length sheaf S. We
will replace E by an exceptional bundle E’ having the following two properties:

(i) Homx(E',S) # 0,

(ii) Homx(E',S') # 0 for all simple exceptional finite length sheaves S’ such that
Homx(E,S’) # 0.

The right perpendicular category E*, formed in coh(X), is equivalent to a module
category over a hereditary algebra. More precisely, by analogue results to those of Straull
(116, Theorem 3.5 and Theorem BJ, (compare [58, Proposition 7.5]) E*t is equivalent to
the coproduct of the category of a finite wing W, consisting of bundles of the component
of E in the Auslander-Reiten quiver, and a category of modules over a hereditary algebra
H, which is connected and wild (resp. tame) provided X is wild (resp. tubular).

By assumption Sis in E*. Since the indecomposables of W are vector bundles, S
belongs to mod(H). Further, S has only finitely many successors in E*, hence it is a
preinjective H-module.

Now, the preinjective component in mod(H) contains only finitely many nonsin-
cere indecomposable modules [101]. It follows that we can choose an exceptional se-
quence (Fy,..., F,) in mod(H), given by a complete slice in the preinjective component,
such that Homx(F;,S) # 0 for each ¢ = 1,...m. Extending the exceptional sequence
(Fy,...,Fn, E), considered in coh(X), to a complete exceptional sequence, we conclude
by connectedness of the category coh(X) that there is an index i such that one of the
spaces Homx(F;, E), Exty(F;, E) is nonzero. We set F' = F}.

According to 3.2.2, there are three possibilities for the left mutation of the exceptional
pair (F, E) in coh(X).

Case (a) Homx(F, E) # 0 and the left mutation of ¢ is given by an exact sequence

can

0 — L — Homx(F,E)®@ F — E — 0.

In this case we can set £’ = F'. In fact, we have Homx(F, S) by construction, and applying
the functor Homyx(—, S) to the exact sequence above, we see that Homx(E, S’) # 0 implies
Homy(F,8’) # 0.

Case (b) Homx(F, E) # 0 and the left mutation of ¢ is given by an exact sequence

0 — Homx(F,E)@ F =“3 E — L — 0.

We claim that F is projective in mod(H). Indeed, since the canonical map is injective,
we obtain, for any X € EY, 0 = Exti(E,X) — Ext)(Homx(F,E) ® F,X) — 0,
consequently Exth.(F,—) = 0. But F was chosen as a preinjective H-module, therefore
this case is impossible.
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Case (c) Ext)(F, E) # 0 and the left mutation of € is given by an exact sequence
0— E— L —Exty(F,E)Y®@ F — 0.
From the exactedness of the sequence
0 — Homx(Exty(F, E) @ F,8) — Homx(L,S) — Homx(E,S) — 0

and the fact that Homx(F,S) # 0 we get Homx(L,S) # 0. Similarly, application of
Homx(—,S’) to the exact sequence above, for those S’ which satisfy Homx(E,S’) # 0,
yields Homx(L,S’) # 0. Therefore, in this case we can take L for the new exceptional
bundle E’.

Iterating the procedure we obtain an exceptional vector bundle, which is omnipresent. O

6.3.3 For an omnipresent exceptional vector bundle on a weighted projective line X =
X(p,A) of weight type p = (p1,p2,...,p:) the rank r is greater than or equal to p; for
each 1 = 1,...t. Furthermore we have

Proposition 6.3.3 The rank r of an omnipresent exceptional vector bundle satisfies the
inequation v > t—1. Moreover, if at least one weight p; is greater than two, thenr > t—1.

Proof. We set 7; = r;g+ i1 + ... + rip,—2- Applying 6.1.2 we obtain

t pi—2 t p—2
g = rt—1 + MA MU 1..»&. + M q...L.ﬁ..L\v — %M M Tij
i=1 j=0 0<5<j'<pi-2 i=1 j=0

¢
= =14 (riog+...+ Tip=2) =TI (Tig+ ...+ Tip2)

=1 =1

t t
r? -1+ Mﬂw = ﬁMU?.
=1 =1
= ().

Note that 0 < (%) and 0 < (x) in case at least one weight p; is greater than two.

Since E is omnipresent, the numbers r; satisfy 1 < r; <7 — 1. Suppose that among
the numbers ry,...,r, the number ¢ appears exactly a;-times, ¢ = 1,...,7 — 1. Thus
ary=t—a; —...— a,_y. We conclude that

r—-2
(*) = =14+ - —a1—...—a,22) + 330

i=1

r—-2
—r((r=Dt—a—... —a,_2) + Y ia;)
i=1

r-2
= = 1—tr—1)+) ca,
=1
where ¢, = —sr 7+ 82— 1= (s —1)(=r+1+3s) for s =1,...,7 — 2. The coefficients
¢, satisfy ¢, < 0, therefore 0 < (r — 1)(r + 1 — t), consequently r > ¢t —1land r > ¢t — 1 if
one of the weights is greater than two. m]
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6.3.4 We keep the notations above. Furthermore, we consider the quadratic forms gx
and qa, associated to the Euler forms on Ko(X) and Ko(Ao), where Ag is the hereditary
algebra described in 2.4.3.

To each exceptional vector bundle E on X we associate its class

(E) =01+ Y nilSi;] +ns(S]

=0,...,p; -2

in Ko(X), which is a root of gx. Moreover, by the remark in 6.1.2, a root (r,n;;,ns) of gx
determines a root (r,n; ;) of ga,.

Let r be a nonzero natural number. Denote by Ex{™"(d,r) the set of isoclasses of
omnipresent exceptional vector bundles on X of rank r and degree d and by RY™"(d,7)
(resp. Rg™™(r)) the set of all roots (r, ny,j,ns) of gx of rank r and degree d satisfying the
condition 0 < n;; < r for all ¢, (resp. of all roots (r,n;;) of qa, of rank r satisfying the
condition 0 < n;; < r for all ¢, 7). Thus we have maps

Ea™™(d,r) 2 RE™(d,r) =2 RE"(r).
Proposition 6.3.4 (i) Let (r,n;;) be a root of qa, of rank r such that 0 < n;; <r for

alli,j. Thenr > t—1. Moreover, if Ag is not a subspace problem algebra, then v >t —1.
(i) If Ao is the t-subspace problem algebra and t > 4, then there are exactly 2' roots

1
of qag, | t—=1 , such that 0 < r; <t—1 for all i. In this caser; =1 orr; =t —2,
Tt
for all z.
Proof. (i) follows immediately from the proof of Proposition 6.3.3 an the remark in 6.1.2.
(ii) Keeping the notations of this proof we have 0 = (r — 1)(r +1 —t) + "~2c,a,

with ¢, = (s = 1)(-r+1 —s)fors = 1,...,r = 2. Sincer =1 -1, we deduce that

¢y =...=c,_g =0, whereas ¢; and ¢,_; can be chosen arbitrarily such that ¢; +¢,—1 = t.
™

Further, all vectors | ¢ —1 with r; € {1,t—2} are roots of ga,, which proves (ii). O
Tt

6.3.5 Up to the end of the chapter X denotes a weighted projective line of type (2,...,2),
t entries, and we assume that t > 4. We will study the map ® = ®; o &, for the minimal
r =1t—1. Clearly ®; and ®; are injective. By the proposition above, qun(r) has 2t
elements, but not all of these roots can be realized by omnipresent exceptional vector
bundles on X. In particular, if r and d are not coprime, then Exg""(d,r) = 0. We will see
that ® is never bijective, however for certain choices of d exactly the half of the 2! roots
will be realized by omnipresent exceptional bundles.

Recall that Pice(X) denotes the group of line bundles of degree zero. In our situation
Pico(X) has exactly 2!~ elements: O(Lid) + ...+ L#), 0 < L < 1, vt L= 0. For
an arbitrary r, the group Pico(X) acts on the set Ezg™"(d,r) of isoclasses of omnipresent
exceptional vector bundles on X of rank r and degree d by shift, provided Ezgm(d,r) # 0.
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Lemma 6.3.5 Let r =t — 1. If Ex{™"(d,r) is not empty, then the group Pico(X) acts

freely on this set.

Proof. Since each ¥ € tL(p) can be written uniquely in the form & = (&) — ) +

c3(Zy — L3) + ... + (T — 1), ¢ € {0,1}, it suffices to show the following statement.
™ LY

Let £ € Ex{"™(d,r) with ®(E)= | » : |. Then ®(E(Z; —Zn))=| r : |, where
T T

ry=r—ry, T, =7—ryand rl =1 for i # 1, m. (Recall that the entries r; are 1 or r — 1

by the preceding proposition)

To prove the statement we can assume m = 2. By [29], the vector bundle E €
Ex3™(d,r) has a line bundle filtration

E=FD>F_1D>...0FRDH, F/F, =

Then [E] = ¥7_,[L;], and therefore r;( E) = dimyHomx(E, S; ) =
=3 :\L. Writing L; = O(aY'%, + oY%, + ... + aP7 ¢) we conclude from the exact
mmncmznom in 2.2.5 that r;(L;) =0 if ag is even @:n_ ri(L;) = 1 otherwise. It follows that.

ri(k) =0, QA.: with QE =0if nE is even and QE 1 otherwise.

On :6 other hand, because shifting by a line bundle is an exact functor, we obtain
[E(F, — &)] = Zjo[Li(F1 — 7)) with Lj(, — 2) = O((q] Oy D& + (aj O _ 1)z, +
a'%5+ ... +aP7,). We see at once that ri(E(Z1 — 33)) = ri(E) fori = 3,...,t. Further,
if 7i(E) = 1, then all but one of the numbers Q:v, 37 A_v are even. Therefore
all but one of the numbers QE + 1, Q@ + _,..JQ_ + 1 are odd, and consequently
ri(E(%) — £2)) = r — 1. Similarly, ry(E) = r — 1 implies r(E(%, — &3)) = 1. The same
argument can be applied for r,, which completes the proof. ]

Theorem 6.3.6 Let X be a hyperelliptic weighted projective line with t weights. Then
there is, up to line bundle shift, a unique omnipresent exceptional vector bundle of minmal
rankr =1t —1 on X.

Remark. Obviously the assertion of the theorem holds also for ¢ = 3. The statement
of the uniqueness fails in the tubular case t = 4.

Proof. We first show the existence of a vector bundle with the desired properties. Con-
sider the exceptional pair € = (O(¢), O(—&)), which is obtained if in the exceptional
sequence of the canonical tilting sheaf O is mutated to the right end. The left mutation
of e yields a new exceptional bundle M as the middle term of the exact sequence

0= O(=@) = M = ExtL(O(8), 0(~3)) ® O(&) = 0.

Since Ext} (O Am.v G ~&)) = Homx (O, O(¢+423)) and ¢+ 23 = (t — 3) &, the vector space

Ext}( 3 O(—&)) has %Em:m_oz t —2. Thus tk(M) =t — 1. Applying the functors
:..::xﬁlq Sio) to :5 exact sequence above we see conclude r;(M) = dimyHomx (M, S; ) =
1, for 2 = 1,...,t. Hence the vector bundle M is omnipresent.

—1 dimgHomyx (L;, Si o)

Furthermore, we deduce that deg (M) = (t — 2)deg (O(c)) — deg (O(3)) = t, and
t

consequently u (M) = 5. According to Lemma 6.3.5 the action of the group Picy(X)
¢

gives 2/~ omnipresent exceptional vector bundles of slope ;.

We have to show that any omnipresent exceptional vector bundle E € vect(X) of rank
t — 1 is obtained from M by a line bundle shift.

Let d = deg(E). By Theorem 3.5.1 rank and degree of E are coprime, therefore we
can assume that 1 < p(E) < 2.

Now, under this assumption, it suffices to prove the following two assertions.

(a) There is an omnipresent exceptional vector bundle E with ri(E) = 1, for i =
1,...,t, if and only if d = ¢.

(b) There is no omnipresent exceptional vector bundle E with r(E) = t — 2 and
r(E)=1fori=2,...,t

Indeed, then by Lemma 6.3.5 for each rational number of the form % +n,n€l,
there are exactly 2!~! omnipresent exceptional vector bundles having this slope and all of
them are obtained from M by line bundle shift.

In order to prove (a) we suppose that F is an omnipresent exceptional vector bundle
of rank r = t — 1 and degree d, such that 1 < m < 2 and all r; = 1. Since E
kolO] + ¥izi,...: mi[O(F5)] + k[O(€)], we see by calculating the degree that 2k. = d —t. By
assumption d —t > 0. On the other hand k. < 0, by Lemma 6.1.3. Thus we get d = ¢,
which proves (a).

Note'that assertion (a) holds also in the tubular case t = 4.

Now suppose that F is an omnipresent exceptional vector bundle on a hyperelliptic
weighted projective line of rank r = ¢ — 1 and degree d, such that 1 < m <2,r=t-2
and r;=1fori=2,...,t.

We claim that d = 2¢ — 3. To show this write again E = ko[O] + ¥, 7i[O(Z:)] +
k.[O(E)]. Calculating the degree and applying that 3°;_, ,ri = 2t — 3 we obtain k. =
1(d +3) —t. Next, calculating the rank and using the formula above, we conclude that
ko = —1(d — 1). By assumption d < 2t —3. In Lemma 6.1.3 (iii) we have shown that
—ko > 7y for all 7, in particular we get —1(d — 1) > ¢ — 2. This gives d > 2t — 3, and
consequently d = 2t — 3 as claimed.

It follows that k. = 0, hence Ext}(O(¢),E) = 0 by Lemma 6.1.3. Furthermore
Homy (O(€), E) = 0, because p(E) < 2 = pu(O(€)) and exceptional vector bundles are
stable in the hyperelliptic case, by Proposition 2.3.7. This means that (E,O(¢)) is an
exceptional pair. Moreover, from

tk(E)  k(O@) | _ | t—=1 1] _ ]
deg(E) deg(O(c)) | |2t—3 2|

we conclude by 2.3.5 that Exty(E,O(€)) = 0 and Homx(E, O(c)) = k. The left mutation
of the exceptional pair (E,O(¢)) defines a new exceptional bundle L as the kernel of the
canonical morphism

0 — L - Homx(E,0(c)) @ E — O(c) = 0.

Since [L] = [E]—[O(&)], we obtain tk(L) = t —2 and deg (L) = 2t —5. Moreover, applying
the functors Homy(—, Si0) to the exact sequence above and using the assumptions r; =
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t—2andr; = 1fori =2,...,t,it is easily seen that dimyHomx(L,Sip) = 1 fori =2,...,t,
dimyHomx(L, Sy 0) = t — 2, and consequently dimyHomy(L,S;1) =t —3 fori=2,...,t,
dimgHomx(L,S;;1) = 0. Therefore L is in the perpendicular category 1S8;;, which is
equivalent to a sheaf category coh(X’) for a weighted projective line (2,...,2), t — 1 entries.
Considered as an exceptional bundle on X', L is omnipresent and satisfies r;(L) = 1 for
all . But u(L) = n.lnu;% and 1 < m_wm < 2, therefore 2t — 5 = deg(L) =t —1 by (a). It
follows that ¢t = 4, a contradiction. This proves the theorem. u]

Corollary 6.3.7 For a hyperelliptic weighted projective line with t weights there are ex-
actly (t—4)(t—1)2"! components in vect(X) containing an omnipresent exceptional vector
bundle of minimal rank r = t — 1. Each of these components contains an omnipresent
exceptional bundle of slope ¢ = 5 +n withn € {0,1,---,(t —4)(t — 1) — 1}.

Proof. The corollary follows straightforward from the proof of the theorem and the for-
mula deg (7x E) = deg (E(D)) = deg E + deg (&) rk(E) = deg (E) + (t — 4)(t — 1). O

6.3.8 Example. Let X be a weighted projective line of weight type (2,2,2,2,2). Then
for each ¢ = m € Q, with r > 3, there are exactly 80 exceptional vector bundles which are
not omnipresent. In fact, we have 10 possibilities to realize a tubular weighted projective
line of type (2,2,2,2) as a perpendicular category to a simple exceptional finite length
sheaf and for each of these embeddings there are 8 exceptional vector bundles of slope
q = m. Moreover, a vector bundle E cannot be contained in the intersection of two
perpendicular categories *S N* S’ for different simple exceptional finite length sheaves S
and &', because this would give an exceptional vector bundle of rank r > 3 on a weighted
projective line of type (2,2,2), a contradiction.

There is no omnipresent. exceptional bundle on X of rank 2 or 3. Also there is no

omnipresent exceptional bundle of slope ¢ = I. For ¢ = m there are 2 omnipresent

A.
exceptional vector bundles. Expressed in the basis [O],[S;o], = 1,...,t, [S], their classes

in Ko(X), up to the choice of the 0, 2 or 4 places for which r; = 3, are

|

-
—_—
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——— 2 o

|
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Chapter 7

Tilting sheaves

7.1 Concealed-canonical and almost concealed-canonical

algebras

In this section we recall the concept of concealed-canonical and almost concealed-canonical
algebras and give a global view on their module categories. Proofs of this results can be
found in [75]. We further show that for an almost concealed-canonical algebra ¥ =
End(T), where the tilting sheaf T' is realized on a wild weighted projective line, the
algebra X is strictly wild, which generalizes the case of a concealed-canonical algebra.

7.1.1 Remember that a coherent sheaf on a weighted projective line X is called a tilting
sheaf if Exty (T, T) = 0 and T generates D*(coh(X)) as a triangulated category (see 2.2.7).

A finite dimensional k-algebra is called concealed-canonical (resp.almost concealed-
canonical) if it is isomorphic to the endomorphism ring of a tilting bundle (resp. tilting
sheaf) on a weighted projective line X = X(p,A). In this case (p, A) is called the weight
type of L.

Let us summarize some basic properties of concealed-canonical and almost concealed-
canonical algebras proved in [75].

(1) The weight type (p, A) of an almost concealed-canonical algebra is uniquely deter-
mined up to equivalence.

(2) If £ is a concealed-canonical algebra then the algebra ° is also concealed-
canonical of the same weight type.

(3) An algebra ¥ is concealed-canonical if and only if ¥ and £°P are almost concealed-
canonical.

(4) The notions concealed-canonical and almost concealed-canonical coincide for tubu-
lar weight type and agree in this case with the notion of a tubular algebra.

Furthermore, almost concealed-canonical algebras were characterized in [75] as certain
branch coenlargements of concealed-canonical algebras. In Chapter 8 we will present a
more general concept for endomorphism algebras of tilting complexes of a special form,
containing the case of almost concealed-canonical algebras as a special case.

For a tilting sheaf T' we denote by cohy(T') (resp. cohd(T)) the full subcategory
of vect(X) (resp. coho(X)) consisting of all I satisfying the condition Exty (T, F) = 0.
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Similarly, let coh_(T) (resp. cohg (T')) be the full subcategory of vect(X) (resp. cohg(X))
consisting of all F' satisfying the condition Homx(7T', F') = 0. Furthermore, let cohy(T)
(resp.coh<(T)) be the additive closure of coh,(T) U cohd (T') (resp. coh_(T') U cohg (T')).

7.1.2 We will describe the global structure of the module category for a concealed-
canonical and an almost concealed-canonical algebra ¥ = End(T'). Observe first that the
indecomposable direct summands from T (resp. from T(&)[1]) are the indecomposable

projectives (resp. injectives). As a consequence of the identification D’(mod(¥)) =

D*(coh(X)) we have

Proposition 7.1.2 (75, 5.1] Let ¥ = End(T') be an almost concealed-canonical algebra.
Then each indecomposable L-module M belongs to one of the following subcategories
o mod, (L), consisting of all vector bundles X on X satisfying Exty (T, X) =0,
e modo(X), consisting of all finite length sheaves X on X satisfying Exty(T,X) =0,
o mod_(Z), consisting of all Z(1], with Z a bundle on X satisfying Homx(T', Z) = 0,
° Eogw:MY consisting of all Z[l], with Z a finite length sheaf on X satisfying
Homy(T,Z) = 0.
Moreover,
M € mody(¥) < rk(M) >0,
M € modo(X) <= rk(M) =0 and deg(M) > 0,
M € mod_(%) < k(M) <0,
M € mod(2) <= rk(M) =0 and deg (M) < 0. v
Further, in the ordering mod (X), mody(X), mod_(X), Eomwuﬁmv there are no nonzero
morphisms from the right to the left. ]

We further define mody(E) (resp. mod<(X)) as the additive closure of mod,(X) U
mody(X) (resp. mod_(X) U Boaw_ﬁmvv. Obviously, for a concealed-canonical algebra we

have Eoﬁ_wzﬁmv = 0. We further denote the projective (resp. injective) dimension of a
Y-module X by pdg X (resp. idg X).

Theorem 7.1.2 [75, 5.4] A concealed-canonical algebra T is connected, and the trisection
of mod(X) satisfies the following conditions:

(2) Each projective L-module belongs to mody(X). All modules X in mods(X) have
pdg X <1. .

(12) Each injective E-module belongs to mod_(X). All modules Z in mod_(X) have
idg Y < 1.

(i17) Fach module Y in modo(X) has pdg Y <1 and idg Y < 1.

(iv) modo(E) = cohd (T') is a uniserial exact subcategory of mod(X), decomposing in a
coproduct [[,ex Uz of connected uniserial sincere subcategories (stable tubes of finite rank),
separating mody () from mod_(X) in the following sense:

(a) there are no nonzero morphisms from mod_(X) to mods(Z) or from mod<(X) to
mod, (%), B B

(b) for each nonzero morphism f : X — Y with X € mody(¥), ¥ € mod_(¥), and
each x € X, there exists a factorization f = [X — U — Y] for some U € U,,

(c) each U, contains a sincere L-module.
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Moreover, each of the subcategories mody (L), mody(¥), mod_(X) is closed under
extensions and almost-split sequences. O

Lenzing and de la Pena proved that the preceding theorem characterizes the concealed-
canonical algebras [78]. In Chapter 8 we will study the separation property for a more
general class of algebras.

7.1.3 It was shown in [75, Proposition 5.7] that for a concealed-canonical algebra ¥ =
End(T'), where T is realized on a weighted projective line X, the representation type of ¥
coincides with that of coh(X). Further, if X is wild, then ¥ is strictly wild, more precisely
admits a homological embedding mod(A) < mod(X) for some wild hereditary algebra
A. Recall that a functor 7': A — C between abelian categories is called homological if it
induces isomorphisms Mx..r?r,buv - mﬁmT»:}uv for all 2 > 0, and all A, A, € A. A
homological functor is in particular a full and exact embedding.

By a modification of the proof the result can be generalized to an almost concealed-
canonical algebra.

Lemma 7.1.3 [75, 5.6] Let E be a vector bundle on X of rank r. For each line bundle L
of sufficiently large degree there exists an embedding £ — L". u]

Theorem 7.1.3 Let ¥ = End(T) be an almost concealed-canonical algebra where T' is
a tilting sheaf on a wild weighted projective line. Then there exists a wild hereditary
algebra A and a homological embedding mod(A) — mod(X). Consequently ¥ is strictly
wild.

Proof. Assume that T = T'& T"” whete T is a vector bundle and 7" a finite length sheaf.
We denote X' = End(7"). According to the preceding lemma we choose a line bundle L
in mody (¥’) such that each indecomposable direct summand of 7" embeds into a power
of L.

Now, all indecomposable objects but a finite number of the right perpendicular
category L*, formed in coh(X), are contained in mods(X). Indeed, Exty(L,X) = 0
implies Ext (7", X) = 0 which yields L* N vect(X) = 0. On the other hand, L* N cohy(X)
contains only finite length sheaves from exceptional tubes T; of a quasi-length less than
the rank of T;, hence this set contains only finitely many indecomposables {Q1,...,Qmn}.
Identifying L* with a module category mod(H) over a wild hereditary algebra H, the
Qi’s are preinjective modules.

Let E be a quasi-simple regular exceptional H-module and E* the right perpendicular
category to E formed in the module category mod(H). We consider the embedding

F: E* < mod(H) & L* < coh(X).

Replacing if necessary, E by some Auslander-Reiten-translate 75" E we can assume that
Qi ¢ E* fori =1,...,m. Therefore F yields an embedding F’ : E* < mod(X). Since
Et < mod(H) and L* < coh(X) are homological embeddings, F” is homological, too.
Furthermore, by [116, Theorem B|, the algebra H is wild, which finishes the proof. u]
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Theorem 7.1.4 (75, 5.8] Let ¥ = End(T) be an almost concealed-canonical algebra. Sup-
pose that T = T'@® T" where T' is a vector bundle and T" a finite length sheaf and denote
¥ = End(T"). Then

(1) mod4(X) coincides with mod(X').

(ii) modo(X) consists of the components U, = U, with = & {Ay,...,A\n} and of
components U,, obtained by “coray deletion” from the components Uy of sheaves on X
concentrated at y, fory € {M1,...,A\n}. The latter ones are those containing projective
Y-modules.

(iti) The family (U.)zex is a separating tubular family for mod(X) (usually not sin-
cere).

(iv) There are only finitely many objects in Bomw:ﬁmv. u]

7.2 Regular components

In this section T denotes a tilting sheaf on a weighted projective line X of arbitrary type.
Let ¥ = End(T) be the attached almost concealed-canonical algebra. Here we describe
the regular components in the Auslander-Reiten quiver of mod(X), i.e. the components
without projective and injective modules. g

Fore this we will compare the Auslander-Reiten translations in coh(X) and mod(X),
which are denoted by 7x and 7y respectively. Recall that 7y is given by a line bundle shift
with the canonical element &.

7.2.1 Similarly as in [29, 3.5] for each F' € coh(X) there is a short exact sequence
0 Fy > F—F_ -0, with Iy € cohy(T'), F_- € cohg(T).

In fact, F is the largest subsheaf of F' belonging to cohy(T').
The following result is similar to a result of Hoshino [55] concerning relative Auslander-
Reiten sequences for torsion pairs in module categories.

Proposition 7.2.1 (a) For each indecomposable module M € mody(X) we have s M =
ﬁﬂX\(Nv.*.. %
(b) For each indecomposable module M € mod<(X) we have Tg M = (1¢ M)_

Proof. (a) was proved in 77, 5.1] if T is the canonical tilting sheaf, the general case
follows straightforward.
(b)For M, N € mod<(X) we have

Homg (g M, N) = Homg(7g M, N) = Homg (M, 15 N),

where Homg(X,Y) (resp. Homg(X,Y)) denotes the group Homg(X,Y) modulo the
subgroup consisting of all £-homomorphisms from X to Y which factor through projective
(resp. injective) modules. This follows from the facts that all projective modules are in
mods (X), in particular 75 M and N have no nonzero projective direct summand, and that
there are no nonzero homomorphisms from mod<(¥) to mods(£).
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Now, invoking the Auslander-Reiten formula and the Serre duality for coh(X) we obtain
Homg (s M, N) = DExt'g(N, M) = DExt'x(N, M) = Homyx(M, N(&)) = Homx (74 M, N).
Applying the functor Hom(—, N) to the exact sequence

0= (rxM)y = xM — (xM)_ =0

we see that Homx(7g M, N) = Homx((7x M)-, N) since there are no nonzero homo-
morphisms from coh(T") to coh<(T'). The last term equals Homg((7x M)_, N) because

both are modules in mod<(X). “Therefore we obtain isomorphisms Homg(rg M, N) &
Homg((1x M)-, N), which are functorial in N € mod<(X), and consequently 75 M =
(e M)-. ]

Corollary 7.2.2 (i) For each indecomposable module M € mod¢(X) we have rk(rg M) >
rk(M).

(ii) Let M be indecomposable in mod_(X). Then rk(rg M) = rk(M) if and only if
mM=1gM.

Proof. (i) The inequality follows from Proposition 7.2.1 and the exact sequence
0 (gM)y o7 M 3175 M =0

and the fact that the application of 7 does not change the rank. Note that tk((rg M)4) <
0.

(ii) Suppose that M is indecomposable in mod_(X) and rk(rg M) = rk(M). From the
exact sequence above we infer that rk((rx M);) = 0. By our assumption we have that
¢ M = F[1] for some F' € vect(X). Because there are no nonzero morphisms from finite
length sheaves to vector bundles it follows that (rg M)4) = 0. a]

Corollary 7.2.3 (i) For each indecomposable module M € mody(X) we have rk(rg M) <
rk(M).

(i1) Assume in addition that T is a tilting bundle and let M be indecomposable in
mod4 (). Then rk(rg M) = rk(M) if and only if s M = 7x M.

Proof. (i) The inequality follows from Proposition 7.2.1 and the exact sequence
0 M = xM — (7xM)_ = 0.

(ii) Let M be indecomposable in mod4(X) and assume that rk(rg M) = rkM. Then
tk((7xM)_) = 0. Because for a tilting bundle coh<(T') does not contain sheaves of rank
zero we obtain (x M)_ = 0, consequently Ts M = 7x M. u]

7.2.4 We recall the notion of a cone in an Auslander-Reiten component, [63]. Assume
that an object Z belongs to a component C of coh(X) or of mod(¥). Then the 7-cone
(— Z) (resp. the r~-cone (Z —) is the full subquiver of C formed by all objects which
are predecessors (resp. successors) of Z.
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Theorem 7.2.4 Let ¥ be an almost concealed-canonical algebra and C be an Auslander-
Reiten component in mod<(X) different from a preinjective component. Then there exists
an indccomposable Z € C such that the 15 -cone (Z —) in C is a full subquiver of a
component in vect(X)[1].

Proof. Applying Corollary 7.2.2 (i) and the assumption that C is not a preinjective
component, we can find an indecomposable Z € C such that the rg-orbit of Z does not
contain an injective ¥-module and 0 > rk(Z) = rk(r5‘Z) for all t > 0. Let

02Z3Y, 055220 (%)

be the Auslander-Reiten sequence in vect(X)[1]. Applying Corollary 7.2.2 (i) we infer that
Tx Z = 15 Z, in particular 74 Z € mod<(X). Applying the functor Homx (T, —) we see
that also Y} @ Y; is in mod<(X).

Moreover, if f : Z — U is a morphism in mod(X) which is not a split monomorphism,
then there is a morphism g : ¥ ® Y, = U in mod(X) such that f = goa. Indeed, in
case U € mod<(Z) we can use the Auslander-Reiten factorization property in coh(X)[1],
and in case U € mody(X) f is zero. Thus (*) is also an Auslander-Reiten sequence in
mod(¥).

Repeating this argument, first for the Auslander-Reiten sequence
01572 1Yo = 7722 5 0,

then for the meshes adjacent to the two already studied and continuing this process we
see that the whole 7g-cone (Z —) consist of Auslander-Reiten sequences in mod(X).
Therefore the 77-cones (Z —) in C and in vect(X) coincide. O

Remark. It will follow from the results in Section 7.3 that mod(X) has a unique
preinjective component.

Corollary 7.2.5 Let ¥ be a wild almost concealed-canonical algebra and C a regular
Auslander-Reiten component in mod_(¥). Then C is of type 1A

Proof. Let Z € C be such that the 77-cones (Z —) in C and vect(X)[1] coincide. The
application of 75 does not produce projective X-modules, thus the result follows from
2.2.9.

7.2.6 Let T = T'®T" be a tilting sheafl on X with 7" € vect(X) and T" € cohg(X). Define
¥ = End(T"). It follows from 2.4.2 that T" is a tilting bundle on a weighted projective line
X' with the property that the right perpendicular category formed in coh(X) to all simple
composition factors of the objects of T" is equivalent to coh(X’'). Moreover, mod(X)
coincides with mody(X'), by 7.1.4. Using these notations we have

Theorem 7.2.6 Let ¥ be an almost concealed-canonical algebra and C be an Auslander-
Reiten component in mod(X) different from a preprojective component. Then there exists
an indecomposable Z € C such that the tg-cone (— Z) in C is a full subquiver of a
component of vect(X').
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Proof. Similarly as in the proof of Theorem 7.2.4 there is an indecomposable Z € C of the
property that the rg-orbit of Z does not contain a projective ¥-module and 0 < rk(Z) =
rk(7Z) for all t > 0. Then for the Auslander-Reiten sequence

0=2mxZ—>Y—>Z-50

in vect(X') we have rk(rg/Z) = rk(rx'Z) = rk(Z). Therefore by Corollary 7.2.3 (ii),
2 = 0 Z € mody (') = mody(E). Now one can follow the dual of the arguments of
the proof of Theorem 7.2.4.

Corollary 7.2.7 Let ¥ be a wild concealed-canonical algebra and C a regular component
in mod4(X). Then C is of type ZA. u]

Remark. If T is a tilting sheaf on a wild weighted projective line X, then X’ can be
wild, tubular or domestic, thus for the almost concealed-canonical algebra £ a regular
component in mody (X) can be of type ZA, a stable tube or of type ZA for an extended
Dynkin graph A.

7.3 The wing decomposition of a tilting bundle

In this section we assume that X is wild and T" is a tilting bundle on X. The following
theorem is the analogue of the result of Strauf8 {116, Theorem 7.5] concerning tilting
modules without nonzero preinjective direct summands over connected (wild) hereditary
algebras. The proof can be done along the arguments of [116] applying 2.4.3.

Theorem 7.3.1 Let T be a tilting bundle over a wild weighted projective line X. Then
there exists a decomposition

T=TroT

which satisfies the following conditions:

(i) The perpendicular category T, formed in coh(X), is equivalent to the module cal-
egory of a connected wild hereditary algebra.

(ii) Tp is Ti--preprojective.

(iti) The preprojective component of the algebra £p = End(Tp) is a full component of
the Auslander-Reiten quiver for £. Moreover, this is the only preprojective component for

. u]

7.3.2 Let T = Tp T, be the decomposition of a tilting bundle from the theorem above.
Now we apply results of [99] and [64] in order to obtain a wing decomposition for 7'
By 2.2.9 all components of the Auslander-Reiten quiver of vect(X) are of the form A,
thus the indecomposable direct summands of T} determine wings in the sense of [100,
3.3]. Recall that for an indecomposable vector bundle W on X with quasi-length m and
quasi-socle X, contained in a component C, the wing W(W) of W is the defined to be
the mesh-complete full subquiver of C given by the vertices l(7g*X) with 1 < r < m,
0 <t < m—r (recall that X is the indecomposable with quasi-length 7 and quasi-socle

X).



Now, if W is an indecomposable direct summand of T' of quasi-length s, then in the
wing W(W) of W there are s indecomposable direct summands of T' and they form a
branch in the sense of [100, 4.4].

FFurther, for an indecomposable direct summand W of T} no summand of Tp is con-
tained in W(W). If W, and W, are summands of Ty such that W(W;) € W(W;) for
i # 7, then W(W,) N W(W,) = 0. Therefore T' has a decomposition

]
T=Trd@PT(M)

i=1

such that T'(M;) is a tilting object, hence a branch, in the wing W(M;) and furthermore
the wings W(M;) are pairwise disjoint. Observe that M; is a direct summand of T'(M;).
Finally, we want to distinguish the branches T'(M;) which do not allow nonzero mor-
phisms to other branches. Define T'(M;) = Tp & @iz; T(M;). Since the quiver of T' has
no oriented cycles there exists an M; such that T'(M;) € T*(M;).
Let {Wy,...,W,} be the set of these M;’s and {V},...,V,} be the others. Then we have

T=Tra TV & BTW,).

i=1

We call this Qanoaco&ﬁos the wing decomposition of T'
Observe that for each V; there exists a W; and a sequence of nonzero maps ( fi)i<i<t
Vi=V, Bv, 3. v, B, =w,
(*) i = Vi i LT i = W5

It follows from 2.3.3 that each f; is either a monomorphism or an epimorphism. In fact
we have )

Lemma 7.3.2 In the sequence (*) above every morphism is an epimorphism.

Proof. Assume that some f; : V;, = Vi, is a monomorphism. Denote by T" the direct
sum of all branches T'(M;) where M = W or M = V such that M; # V;, and there is a
chain of nonzero maps

«\.._|v>NF|v>\N»u|v...lv>§€”>@

and let 7' be the complement of T" in T. Now, the perpendicular category (T")* is
equivalent to a module category mod(H) over a hereditary algebra H. Observe that T’
is in (T")*. Since f; is a monomorphism we have an embedding V;, < T".

We claim that V;, is projective in (T”)1. Indeed, if Z is an arbitrary object in (T")*,
then Extk(7",Z) = 0 and therefore m,\ngﬁ.VLS:NV = Extx(V;,Z) = 0. Then V, is
preprojective in mod(X’) where £’ = End(T"). Since Tp is contained in T’, Vj, is also
preprojective in mod(Xp) hence in mod(Z). Consequently, V;, is a direct summand from
Tp by Theorem 7.3.1, a contradiction. a

7.8.3 If T'is a tilting sheaf with wing decomposition

T=Tr o DT(V) o BTW,)

i=1 j=1

then we consider

@
“

~
Il
5
&
-

where V; (resp. W;) is the direct sum of the projectives in the wing W(V;) (resp. W(W;)).
It is easily checked (compare [100, 4.4]) that T is a tilting sheaf again and

T=Tro BV odW,
j=1

i=1

is the wing decomposition of T. We call T the normalized form or the normalization of
T. As in [64, Lemma2.5.] we have

Lemma 7.3.3 Let T be a tilting sheaf with wing decomposition

| 7= T e DT(V) 0 HTW,)

i=1

and let T be the normalization of T.

(a) Assume that I’ € coh(X) is not contained in the wings W(rxV;) and W(rxW;) for
all 2,j. Then F € cohy(T) if and only if ' € cohy(T).

(b) Assume that I € coh(X) is not contained in the wings W(Vi) and W(W;) for all
t,j. Then F € coh<(T) if and only if F' € coh(T). u]

7.3.4 We will use the following information about wings proved in the situation of mod-
ules in [64] (see also [99]) and easily seen to be valid in our situation.

Lemma 7.3.4 Let U be indecomposable in vect(X) with quasi-length r and quasi-top X .
Then we have

(a) For an indecomposable vector bundle Y in vect(X) which is not in add(W(U)) the
following conditions are equivalent:

(1) Homx(Y,U) =0,

(2) Homy (Y, 74 X) =0 fori=0...r—1,

(3) Homx (Y, W) =0 for all W € add(W(U)).

(b) For an indecomposable vector bundle Z in vect(X) which is not in add(W(U)) the
following conditions are equivalent:

(1) Homx(U,Z) = 0,

(2) Homx(13X,Z) =0 fori=0...r — 1,

(3) Homx(W,Z) =0 for all W € add(W(U)). O
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Lemma 7.3.5 Let W be an indecomposable vector bundle in vect(X) with quasi-length m
and quasi-top X. Then the following conditions are equivalent
(a) X,7xX,..., 727X are pairwise orthogonal.

(b) If Z,Y € add(W(W)), then rad™(Z,Y) = 0. ]

Here rad denotes the Jacobson radical of the category coh(X) and the infinite radical
rad®™ is the intersection of all powers rad’, ¢ > 1 of rad. If one of the two conditions of
the lemma is satisfied we call W(W) a standard wing.

Lemma 7.3.6 Let W be an indecomposable vector bundle on X with quasi-length m and
let R be the indecomposable in vect(X) such that there is an irreducible epimorphism from
R to W. Then W(R) is a standard wing if and only if W is exceptional. u]

7.4 Non-regular components for concealed-canonical
algebras

In this section we describe the non-regular components for concealed-canonical algebras.
The results are similar to those in the case of tilting modules without preinjective direct
summands over wild hereditary algebras studied by Kerner.

7.4.1 The following theorem is an analogue of [64, Theorem2]. Observe that contrary
to this situation we obtain more precise information by comparing the ranks and degrees
of the quasi-simples in the wing decomposition.

Theorem 7.4.2 Let T be a tilting bundle on a wild weighted projective line X with wing
decomposition

T= #.mmﬁsv @m,wiss.

Denote by X; the quasi-socle of W; and let R; — W, be an irreducible epimorphism for
7=1,...,7. Then we have

(a) R; € cohs(T) for j =1,...,r.

(b) Let 1 be such that rk(X;) is minimal and p(X;) is mazimal among the X} s with
minimal rank. Then

(i) 72 X1 € cohy(T') and

(ii) The 7x-cone (— 7X;) is contained in cohy(T) and is a full subquiver of the
non-regular component in mod(X) containing W;.

Proof. By Lemma 7.3.3 we can assume that T is normalized. Therefore let

T=Tro@PV.o PW,

i=1 i=1

using the notation of 7.3.3.

7

(a) First, W) is exceptional, thus by Lemma 7.3.6, W(W,) is a standard wing and by
Lemma 7.3.5, Homx (R;, 7xW;) = 0. Moreover, Lemma 7.3.4 implies that Homx (R;, xW ;)

= 0. Now, let T'=W; @ T'(W;) and consider the exact sequence
0 n~W, 2R, = Z; = 0.

Then we get Homx(Z;, xT'(W;)) = 0 because otherwise 0 # Homy(W;, xT"(W;)) =
DExtL(T'(W;),W;) which is impossible. Further, from the wing decomposition of T
we obtain Homx(W;,T'(W;)) = 0, hence Homx(R;,xT'(W;)) = 0. It follows that
Homx(R;, 7xT) = 0, and consequently Exti (T, R;) = 0.

(b) We know from (a) that R, € coh(T), thus by Proposition 7.2.1, e Ry = (7x Ry)+
and we have an exact sequence

0 15 R = xR — (xRi)- = 0.

Set @ = (7xRi)-. In the same way as in [64, Lemma 2.3] we conclude that @ €
add(re(@iz, Vi ® D], W,)).

We claim that 73X, € cohy(T). Assume first that @ is of the form (rxW;)®™ for
some m. Since W(R)) is a standard wing, Homy(7x R, 7x W) = k and therefore applying
the functor Homx(—, W;) to the exact sequence (3) we obtain m = 1. Hence we have a
commutative diagram

0 =R xR ~xW 0
H _m T
J
0 % Xi R ~xW 0

The induced morphism is an isomorphism, in particular we infer that 72X, 2 7z R, €
coh(T).

Suppose now that Q contains an indecomposable direct summand
Y € add(7x(®i-, Vi ® B;x W;)). Then there is an epimorphism 7xR; - 7xY and
therefore an epimorphism R; — Y. Moreover, applying the functor Homx(—,Y) to the
exact sequence

05X R—->W >0

we obtain a nonzero map f : 7xX; = Y. Now, Exﬂc\q xX1) = DHomx(7x X1, 7x V1) =
DHom(X),Y;) = 0, therefore by 2.3.3, f is an epimorphism or a monomorphism. Clearly
[ is not an isomorphism, because Y € cohy(T') but mx X, € coh(T').

Assume first that f is an epimorphism. If Y = W; for some j, then rk(X;) > rk(W;) >
tk(X;), contrary to the assumption on I. If Y = V; for some 7, then using Lemma 7.3.2,
we can compose f with an epimorphism V; — W;, and again rk(X;) > rk(W;) > rk(Xj;)
gives a contradiction.

In case f is a monomorphism we also have a monomorphism 72 X; < 7x¥. Applying
the functor Homx(7, —) we see that Homx(T,72X;) = 0. Now, applying the functor
Homy(T, —) to the exact sequence

0 72X = xR = xW; =0
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we conclude Homy (T, 7x ;) = 0, which means that 7x Ry € coh<(T). Therefore 7z R =
0, hence R, is projective in mod(X), which is impossible. This finishes the proof that
T2 X € cohx(T).

Now we show by induction on n that 7¢ X; € coh»(T'). From the induction hypothesis
and Proposition 7.2.1 we see that 75(7g7' X|) = (72 Xi)4, thus there is an exact sequence

0= mp(ry ™' X0) = ¢ Xi = Q = 0.
Again by the arguments of [64, Lemma 2.3] we have Q € add(rx(®i-, V: ® @}, W;)).

i=1

Assume that Q # 0. Then there is an epimorphism f : 727'X; — Y where Y is some W;
or some V;. Using Lemma 7.3.2 the second case can be reduced to the first one. Now, if
f 737X, — W, is an epimorphism but not an isomorphism then rk(X;) > rk(W;) >
rk(X;), which contradicts the choice of I. On the other hand, if f is an isomorphism then
W, = X; and therefore rk(X;) = k(X)) but p(X;) = p(Xi((n — 1)&)) > p (X)), again a
contradiction to the assumption on [. Hence @ = 0 and consequently ¢ X; 2 75(t271 X)),
in particular 7¢ X; € coh»(T).

Iinally, as in the proof of Theorem 7.2.4 one shows that all Auslander-Reiten sequences
in the 7x-cone (= 72X}) in vect(X) are also Auslander-Reiten sequences in mod(X). Using
s Ry = 72X, and the existence of an irreducible morphism from R; to W, we see that the

cone (= 72X;) and W, are in the same component in mod(X). m]

7.4.3 In analogy to StrauB}’s definition [116, 7.2] of a special direct summand of a tilting
module we define a special direct summand of a tilting bundle. In contrast to the situation
of a tilting module, which has regular but no preinjective direct summand (116, 7.3] we
can show the existence of a special summand using the rank and the degree functions.
Observe that the condition is the same as in the preceding theorem. We note further that
a modified version of the following theorem can also used in the induction step of [64,
Theorem 1] which completes the gap there.

Definition 7.4.3 Let T be a tilting bundle. An indecomposable direct summand S €
add(T) is called a special summand of T, if S is a sink summand of T and T has no
Kl -preinjective direct summands.

‘Here S denotes the direct sum of all indecomposable projectives in the wing W(S).

=l

Observe that the definition makes sense because S~ is equivalent to a module category.

Theorem 7.4.3 Let T' be a normalized tilting bundle on a wild weighted projective line
X with wing decomposition T = Tp @& @, V: ® @wu_—\lﬁ Denote by X; the quasi-socle
of Wj. Let | be such that rk(X;) is minimal and p (X;) 1is mazimal among the X} s with
minimal rank. Then W is a special summand.

Proof. Let us consider the bundle " = T'(W,) = Tp ® @1, V: ® @Nﬁﬂﬂ. in Wi*.
We define ¥’ = End(7'). Note that an indecomposable direct summand from Tp is
preprojective in mod(X), thus preprojective in mod(X'), and consequently not preinjective
in ﬂ\lx..

Next we show that no X;,j # [ is preinjective in W;™. Fix such an X;. By [77,
Theorem 2.7] there exists an N such that Homx(rg™ X;, X;) # 0. Now, consider the
chain of irreducible maps in coh(X):
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1o v My oa e Bn g € _—n-1 [ P, | €nt1
X;8Y 85X, 5 00 X; Sty S X 8 oty L

LG g Ny, NS N X (%)
where all g, are monomorphisms and all €, are epimorphisms.

In case all 74" X; and all 7,"Y; appearing in (*) belong to |$Nk we obtain a cycle in
Wi and then X is regular. Thus we can assume that one 74" Z; with Z =X or Z =Y
is not contained in W

We claim that Homy(W,;,7¢"X;) = 0 for n = 0,...,N. First, as a consequence
of Theorem 7.4.2 we have 0 = Exty(T,72X;) & DHom(rg X, 7xT) for n > 2. More-
over, Homx (W), X;) = 0 which implies by Lemma 7.3.4, Homx (7™ Xi, X;) = 0 for
m=0,1,...,t where ¢t + 1 is the quasi-length of W;. Therefore Homy(r¢™ X, 74" X;) =0
for m = 0,1,...,t and n = 0,1,..., N. Observe that 74" X; ¢ add(W(W})). Indeed,
otherwise X; is in the 7-orbit of X; which implies that X; and X; have equal rank.
Since the wings W(W;) and W(W;) are disjoint, this would imply X; = 7™ X for
some m > 0, hence p(X;) < p(X;), which contradicts the assumption on I. Therefore
" X; € add(W(W,)) and consequently Homx(W;, 7¢" X;) = 0 by Lemma 7.3.4.

It follows that in our case some Exty(W,;, 75'Z;) # 0 for some 74'Z;, Z = X or
Z = Y. Because the ¢; are epimorphisms, the first sheaf of (¥) which is not contained
in W* is some 7<"Y;. For this n we have Exty (W, 75"Y;) # 0. Now, by [56] the
embedding Wit < coh(X) admits a left adjoint functor I : coh(X) — W;*. Then we can
proceed as in [116, Lemma 7.2). The object {(1x"Y;) is indecomposable by [116, 2.2],
using Homyx(7¢™Y;, W) & DExty (W, 7x™*1Y;) = 0 by the choice of n. Moreover, the
map I(g,) : I(r5" X;) = I(7¢™Y;) is nonzero. Now, W;* is the coproduct of Wi* and the
category of a finite wing by [116, Theorem 3.5 and we conclude that I(r5"Y;) € W, It
follows that Homx ({(7¢"Y;), Ri) = Homx({(75"Y;), W), where R is defined as in Theorem
7.4.2. By the construction of the functor I (see [30]) the last term is nonzero. Thus we

; Nt
have a chain of nonzero maps in W;™:

X; oV, o1 X, oY, o " X = (17" X)) = 1Y - R

By [116] R, is regular in Wi*. Therefore X; and consequently no direct summand of W;

is preinjective in u_\ﬂh, because irreducible maps between the projectives in wings remain
irreducible in @ﬂh.

In order to finish the proof it remains to show that no V; is preinjective in Wit By
Lemma 7.3.2, for each V; there is some epimorphism f : V; - Wj. If j # [ we conclude
from the fact that W; is not preinjective that V; is not preinjective. If j = [, then
f Vi = W, factors through the middle term of the Auslander-Reiten sequence ending in
Wi, and since Homx(V;, x W) = DExt! (W, Vi) = 0 it factors through R;. Now the fact
that R, is regular in ﬂk implies that V; is not preinjective in e|S». [}
Theorem 7.4.4 Let T be a tilting bundle on a wild weighted projective line X with wing
decomposition

= Tp @ @TV:) & @D T(W,).
=1 =1
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Define ¥ = End(T') and £p = End(Tp). Let C be a component in mody(X). Then there
erists an indecomposable Z € C such that the 15 -cone (Z —) is a full subquiver of a
component in mod(Xp).

Proof. The proof of this theorem is similar as the proof of [64, Theorem 1].
We can assume that C is not the preprojective component and furthermore that 7' =
Tp @, Vi @D, W is normalized. Define T'(W;) = Tp & @1, Vi & D W..
Choose [ such that rk(X;) is minimal and (X)) is maximal among the X}s with
minimal rank. To simplify notations we write W = W) and X = X, where as before X
is the quasi-socle of W,. Let Z € C. We first will show that for some N >0,

Homx(W,75'Z) =0 for t > N. (7.1)
By [77, 2.9] there is an integer M such that
Homx (T4 X,Z) =0 for i > M. (7.2)

Let i > 2. We know from Theorem 7.4.2 that 74 X € cohy(T) and for these objects the
application of 75 and 7 coincides. Therefore the application of 7 gives an isomorphism

Homg (4t X, 754 Z) = Homg (4 X, 757 Z). (7.3)

The first term of (7.3) equals Homg(4t! X, 75 Z) because mod 4 (Z) contains no nonzero
injective £-modules and the second term equals Homg (74X, 75'"'Z) because for 7 > 2,
Homg (74 X, T) = Homx (4 X, T) = DExt!(T,75t") = 0 and therefore a nontrivial factor-
ization through a projective module is not possible. Iterating the arguments above t 4 1
times we obtain Homg (i X, 7571 Z) = Homg(r4t'*' X, Z), which vanishes by (7.2) for
t>M—i—1.

Thus we have shown that there exists an N € N such that

Homx (T4 X, 75'Z) =0 for t>2 and t > N. (7.4)

Now we prove that

Homx(r4 X, 75'Z) =0 for i >0 and t > N + 2. (7.5)

Consider the exact sequence
0= 75'Z 2 1x(15"7'2) B Q>0

where Q, = (7x(75'"'Z))_. By [64, Lemma 2.3], Q, € add(rx(®_, Vi ® B[-, W;)). Now,
for t > N, Homy (12X, 75'Z) = 0 and Hom(7X,Q;) = 0 because there are no nonzero
morphisms from cohs(T) to coh<(T) and consequently 0 = Homy (72X, 7x(75'7'Z)) =
Homyx(rx X, 757" Z).” B

Assume now that there is a nonzero morphism f € Homy (mx X, 7x (157" Z)) &
Homx (X, 757" Z) for t > N+1 Applying the functor Homy(7x X, —) to the exact sequence
above we see from Homx(7xX,75'Z) = 0 that the composition po f : xX — Q is
nonzero. Since it factorizes over 7x(7g '™ Z) it is in rad™(rx X, Q,).
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Let Q@ = Ey @ E; where E; € add(7xW) and E, is without direct summand isomorphic
P
P2
decomposition of T. It follows that 0 # p; o f € rad®(rx X, (7xW)™) which gives a
contradiction to the fact that W(W) is a standard wing. Thus the formula (5) holds.

Let ¢ be the quasi-length of W and denote by VX the indecomposable vector bundle
with quasi-length j and quasi-socle X. We show by induction on u that for 1 < u < ¢
there exists an N’ € N such that

to x W and decompose p = ,pi i 7x(15'7'Z) = Ei. Then pyo f = 0 by the wing

Homx (V15 X),75tZ) = 0 (7.6)

foralli >0, 5 <u, t > N'. The case u = 1 was already proved. For u > 0 we consider
the Auslander-Reiten sequence

0— (X)) > MriX)e b-A(rix) » bIEX) 50

(where for u = 1 the middle term consists only of the first summand). Applying the
functor Homyx(—,75‘Z) we obtain by induction that Homx(4(r X), 75Z) = 0 for t >
N’ and ¢ > 1. In order to show that also Homy(X,75'Z) = 0 assume contrary
that there is a nonzero map f' € Homx(X,75'Z). Then for the corresponding f €
:oax?@kq 7x(75'Z)) the composition po f is nonzero and is in rad®(rx X (u), Q). Us-
P
P2
0 # pio f € rad®((rx X), (rxW)™), a contradiction because W(rxW) is a standard
wing. It follows that Homx (X, 75'Z) = 0 for t > N'.

For u = q we obtain Homx(W, 75'Z) = 0 which proves formula (7.1). As a consequence
for Z' = ﬂmuz‘N the 7g-cone (Z' —) consists of modules over End(7T"(W)). Now the
perpendicular category Witis equivalent to a module category over a hereditary algebra
H. Under this equivalence T'(W) corresponds to a tilting module in mod(H), which
is, by Theorem 7.4.3, without a preinjective direct summand. The modules of (2’ —)
are contained in the class of torsion-free modules YVinoa(s)(T'(W)) of the torsion pair in
mod(H) defined by the tilting module T'(W). Moreover, the Auslander-Reiten sequences
of C which are in this cone are also Auslander-Reiten sequences in Yumod(n)(T'(W)). This
means that (Z' —) is part of a component in Ynoacs)(T'(W)) and then our result follows
from [64, Theorem 1]. O

ing again the decomposition Q, = E; @ E,, and p = we have p, = 0 and then

Il

Corollary 7.4.4 Let £ be a wild concealed-canonical algebra and C a component in
mod, (X) different from the preprojective component. Then the stable part of C is of
type 1A . 0O

Corollary 7.4.5 Let X be a wild weighted projective line, T a tilting bundle on X and
L = End(T) the corresponding concealed-canonical algebra. Then T defines bijections
between the following three sets:

o Q(X) of components of vect(X),

o 0,(X) of components of mody(E) different from the preprojective component,

o (NXp) of reqgular components of mod(Ep).
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Proof. Let C be a component of mody(X) different from the preprojective component.
It follows from Theorem 7.2.4 and Theorem 7.4.4 that there exist a unique component C’
in vect(X) and a unique regular component C” in mod(Xp) such that C and C' coincide
on a 7-cone, and C and C” coincide on a 77-cone. Thus we obtain injective maps

a1 Q(5) = QX) and  pp 1 Q4 (T) = QSp).

Let D be a component of vect(X) and X a quasi-simple vector bundle in D. We have
DExt!x (1,73 X) = Homx(r3 X, 7xT") = 0 for all n > ng by [77, Theorem 2.9]. Therefore
all objects in the 7-cone (— 7x° X) are in mod (X) and the Auslander-Reiten sequences of
that cone are also Auslander-Reiten sequences in mod(X). Consequently p; is surjective.

In order to show that also p; is surjective we proceed as in [64, Theorem 3]. ¥ is an
iterated branch enlargement (compare 8.3)

Y= QG—N_,Q__ .. .MNSUQS_,
where Co = Sp and, for j = 1,...,m, C; = Co[Z;;Qi]...[Z;,Q,] is obtained by a

one point-extension of QT_ by a quasi-simple C;_;-module Z; and then rooting a linear
quiver Qj = 0 = 0 — ... — o at the module Z;. Now, let D be a regular component
in mod(E£p) and Y a quasi-simple object in D. Applying Theorem 7.4.3 we see that, for
j=0,...,m—1, C;is a tilted algebra of some wild connected hereditary algebra with
tilting module without EQE@QZ@ direct summand. Therefore by [64, Corollary 3.2] there
are N; €N, j =0,...,m — 1, such that EOBPANZ_L.OL ) =0 for I > Nj. It follows
that the Auslander- 5@.8: sequences of a 77-cone (75, Y —) are also Auslander-Reiten
sequences in mod(X) and consequently p; is surjective. O

Remark. Invoking the duality D : cohy(T) = coh_(T'), F — F{&+&) we have for
a tilting bundle the same results for mod_(X).

7.5 Non-regular components for almost concealed-
canonical algebras

The results of the preceding section can be generalized to almost concealed-canonical
algebras. Assume that T = T’ @ T" is a tilting sheafl on a wild weighted projective line
X with 7" a vector bundle and T a finite length sheaf. Because mod, (%) coincides with
mod, (X') where £’ = End(1”), by 7.1.4, the structure of the components of mod, ()
follows from the description of the previous sections (see 7.2.6 and 7.4.4).

In order to describe the left hand side of a component of mod_(X) we use the dual
wing decomposition. The proofs of the following results are dual to those of 7.4 and are
therefore omitted.

Theorem 7.5.1 Let T be a tilting sheaf over a wild weighted projective line X. Then
there exists a decomposition

T=T, T

which satisfies the following conditions:
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(i) The left perpendicular category Ty is equivalent to the module category of a con-
nected wild hereditary algebra.

(ii) Ty is *Tp -preinjective.

(ii) The preinjective component of the algebra £y = End(Ty) is a full component of
the Auslander-Reiten quiver for ©. Moreover, this is the only preinjective component for

£. g

7.5.2 Dually to 7.3.2 we have a decomposition
b

=@PTW)ePT(V) ST
j=1 i=1
Theorem 7.5.2 Let T' be a tilting sheaf on a wild weighted projective line X with a de-
composition

T= mwﬂ @@% ) B Th.

Denote by Z; the quasi-top &‘ W; and let R; + W; be an irreducible epimorphism for
j=1,...,a. Then we have

(a) R; € coh(T) for j =

(b) Let 1 be such that rk(Z;) is mazrimal and ;(Z)) is minimal among the X' s with
mazimal rank. Then !

(1) % Z1 € coh(T') and

(1) The 75 -cone (1 Z; —) is contained in coh<(T') and (74 Z) —)(1] is a full subquiver
of the non-regular component in mod(X) containing xW,. O

a.

Observe that this is the dual situation of Theorem 7.4.2 shifted by ry. Moreover,
because T is not contained in cohg(X), X; is a vector bundle, and therefore we can apply
dual arguments to those as used in the proof of Theorem 7.4.2.

Theorem 7.5.3 Let T be a tilting sheaf on a wild weighted projective line X with decom-
position

@ﬂ @@Q T

bnw:ﬁm by Z; the quasi-top of S\T Let | be m:n: that tk(Z;) is mazimal and p(Z)) is
minimal among the Z}s with mazimal rank. Then no direct summand of T is L W,-
preprojective, where W, denotes the direct sum of all injectives in the wing W(W,). 0o

..ﬁrm theorem can be proved again by using dual arguments with simple modifications.
It is essential for the induction step of the following result.

Theorem 7.5.4 Let T be a tilting sheaf on a wild weighted projective line X with decom-
position

m@ﬂ @m? ) D Ty

Define & = End(T) and ©; = End(Ty). Let C be a component in modg(). Then there
ensts an indecomposable Z € C such that the tg-cone (= Z) is a full subquiver of a
component in mod(Xy). D
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Corollary 7.5.5 Let T' be a tilting sheaf on a wild weighted projective line X and T' =
T & T" with T" € vect(X) and T" € cohg(X). Furthermore, let T = T, & T; be the
decomposition of Theorem 7.5.1. Then T" is a direct summand of Ty. Furthermore all
modules from anm:mv are preinjective.

Proof. Let C be a component in mod<(X) different from the preinjective component
containing some injective ¥-module of the form Y = 74xM;[l] where M = W or V
and M; € cohg(X). It follows from Theorem 7.2.4 and Theorem 7.5.4 that Y has in-
finitely many successors in the component C. This is impossible, since the ¥-modules
from Soam:wv have only finitely many successors in mod(%). O

Corollary 7.5.6 Let X be a wild weighted projective line, T' a tilting sheaf on X and ¥ =
IEnd(T') the corresponding almost concealed-canonical algebra. Then T defines bijections
between the following three sets:

e ()(X) of components of vect(X),

o _(X) of components of mod_(X) different from the preinjective component,

o ;) of regular components of mod(%;).

Proof. A component of mod_(X) coincides on a 7-cone with a component of mod(X;)
and on a 77-cone with a component of vect(X). Now we can apply similar arguments as
in the proof of Corollary 7.4.5. For the proof of the surjectivity of y; we use the fact that
there are no nonzero morphisms from 7" to vector bundles. O

Chapter 8

Tilting complexes

8.1 Tilting complexes and exceptional sequences

Let X be a weighted projective line of arbitrary type. In this section we define the notion
of a tilting complex on X and discuss the relationships between tilting complexes and
exceptional sequences.

Definition 8.1.1 We call an object T in D*(coh(X)) = D a tilting complez if it satisfies
the following two conditions:

(i) Homp(T, T[i]) = 0 for ¢ #0,

(ii) The indecomposable direct summands of T' generate D*(coh(X)) as a triangulated
category.

An object T in D*(coh(X)) which satisfies only the vanishing condition (i) is called a
partial tilting complez.

The notion of a tilting complex for a module category has been introduced by Rickard
in [97) and generalizes that of a tilting module (see [17], [45]). In our situation we have

Theorem 8.1.1 If T is a tilting complex in D*(coh(X)) with endomorphism ring ¥ =
Endp(T'), then the derived functor

RHom(T, —) : D*(coh(X)) = D*(mod(X))

is an equivalence of triangulated categories. Conversely, each triangle equivalence
D*(coh(X)) 5 D¥(mod(X)), for a finite dimensional k-algebra ¥, is given by a lilling
complex T in D°(coh(X)) such that & = Endp(T). =]

The proof for tilting sheaves [5, Theorem 3.1.2], [29, Theorem 3.2] generalizes to the
more general case of tilting complexes.

A finite dimensional algebra ¥ such that mod(X) is equivalent to coh(X) arises from
coh(X) by a finite sequence of tilts/cotilts, that is there is a sequence y,...,, = £,
where (), is the endomorphism algebra of a tilting sheaf in coh(X), and for ¢ = 2,...n -1
the algebra €, is the endomorphism algebra of a tilting or cotilting module over End(€2;)

[43).

85



86

A complex is called multiplicity-free if its indecomposable direct summands are non-
isomorphic. Furtheron all tilting complexes are assumed to be multiplicity-free, which of
course is no loss of generality.

8.1.2 The following lemma shows that the indecomposable objects of a tilting complex
for coh(X) may be arranged in a complete exceptional sequence. It works also for an
arbitrary abelian hereditary k-category having a tilting complex.

Lemma 8.1.2 The indecomposable direct summands of a multiplicity-free partial tilting
complex T in D*(coh(X)) can be ordered such that they form an exceptional sequence ¢.
Moreover, if T is a tilting complex then € is complete.

Proof. The complex T" decomposes into a direct sum @ T;[n;] for some partial tilting
objects T; in coh(X) and n; € Z, in particular we have Exty(7i,T:) = 0. From the
vanishing condition for a tilting complex we obtain Homx (7}, T;) = 0 and Exty(T;,Tj) = 0
forn; > n;. Let T; = @i, k~3 be a decomposition into indecomposable objects of coh(X).
Then, according to 2.3.3, m=&\53v = k and the vbS can be ordered in such a way
that :oExAXMV,XMJ =0if I, > l,. Therefore we obtain an exceptional sequence.
Further, if T' is a tilting complex, then the number of indecomposable direct summands
of T' equals the rank of the Grothendieck, and the exceptional sequence is complete. O

We call an exceptional sequence of the form described in the preceding lemma a tilting
sequence. Similarly an exceptional sequence corresponding to a partial tilting complex is
called a partial tilting sequence.

8.1.3 From the lemma above and Lemma 3.1.2 we obtain

Lemma 8.1.3 Let T be a multiplicity-free complex in D*(coh(X)) such that
Homp(T, T[i]) = 0 for i # 0. Then the following conditions are equivalent:

(a) The indecomposable direct summands of T generate D*(coh(X)) as a triangulated
category.

(b) The number of indecomposable direct summands of T coincides with the rank of
the Grothendieck group Ko(X). o

8.1.4 It was shown in [86] that for a module category over a hereditary algebra of type A,
a complete exceptional sequence can be considered as a tilting complex. More precisely,
let @ a Dynkin quiver and A = kQ the path algebra. Then Q is of type A, if and only
if for each complete exceptional sequence € = (X1, Xy,..., X,) in D*(mod(A)) there are
integers j;, 1 <i < n, such that @, X;[s;] is a tilting complex.

For the category coh(P') of coherent sheaves on the projective line each exceptional
sequence is of the form (O(n), O(n+1)) and can be therefore considered as a tilting sheaf,
for the general case however we have the following result proved in [86].

Proposition 8.1.5 Let X be a weighted projective line such that at least one weight is
greater than one. Then there is a complete exceptional sequence in D*(coh(X)) which
cannot be shifted to a tilting complez.
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Proof. Forming perpendicular categories to simple exceptional sheaves of finite length
one reduces to the weight sequence (2).
In this case for the exceptional sequence

€ =(0,51,1,0(31)),

where Sy; is the the cokernel of the exact sequence 0 — O(&)) & 06 = 81y — 0, we
have Homx (O, 81,1) # 0, Homyx(O,0(F)) # 0 and Extk(S11,O0(F1)) # 0. Therefore €

cannot be shifted to a tilting complex. O

8.1.6 If T is a tilting complex on a weighted projective line X, then the indecompos-
able direct summands of T are taken from consecutive copies of coh(X) in the derived
category. The number of these copies is called the width of the complex. The following
example shows that the width of a tilting complex can be equal to p; + p; — 2, where
p = (p1,p2,...,pt) is the weight type of X.

Example. The complex

Sittipgy-2l=Pirr + 1= Sipa[-2] =S 410(-1] /

\\%_.lllv. S1-all] - —=Sialp - 2]
/ﬂ..l_l' Si,-a1) - =8, 5, -l -

is a tilting complex on X = X(p, A). We have indicated the quiver of the endomorphism
algebra ¥ = End(T'). Note that T' contains all but one simple finite length sheaves from
each exceptional tube.

—
o o(2)

St,pe-al-pe +1] —_— Sea[-2)  —S0[-1] \

8.2 Tilting complexes for weighted projective lines
with parameters

8.2.1 We have seen in 3.4.2 that for weighted projective lines X = X(p,A) and X' =
X(p, X') of the same weight type there is a nice bijection between the exceptional objects
in coh(X) and coh(X’), respectively. This bijection is not functorial but it preserves the
K-theoretical data. Now, by the same arguments, there is a constructive bijection ¥ from
the set of complete exceptional sequences in D?(coh(X)) to the set of complete exceptional
sequences in D*(coh(X’)); ¥ associates to a sequence of the form ¢ = ¢.K the sequence
€ = g.K’ constructed by the same element g of the group G, = 7" x B,. Recall that K =
(Ox, Ox(E1), oo Oxl(p = 1)Z), Ox(@) and K’ = (Osr, Oe(F1), e Ol (1= 1)), O (@)
are the tilting sequences corresponding to the canonical tilting sheaves on X and X',
respectively.

Proposition 8.2.1 The function ¥ described above induces a bijection between the tilting
complezes on X and X', respectively.

Proof. We know from 8.1.2 that the indecomposable objects of tilting complexes in coh(X)
and coh(X’) may be arranged in complete exceptional sequences. Further, the condition
that an exceptional sequence ¢ = (E, ..., E,) in D*(coh(X)), is a tilting sequence can be
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expressed in certain vanishing conditions for the spaces Homx(F%q, F}) and Exty(Fa, Fy),
a < b, where E; = F[n;] for F; € coh(X) and n; € Z.

Now, by construction, for ¢ = g.K = (Ei,..., E,) and ¢ = ¢.K' = (E{,..., E}) the
classes [I5;] and [E!] are equal under the natural identification of the Grothendieck groups.
Moreover, according to 2.3.4, for an exceptional pair (A, B) appearing in € or € at most
one of the spaces Hom(A, B), Ext'(A, B) is nonzero. It follows that ¢’ satisfies the same
vanishing conditions as €. Therefore ¢ is a tilting sequence if and only if ¢ is. O

8.2.2 As a consequence of 8.2.1 we see that if £ = End(T) is the endomorphism algebra
of a tilting complex on a weighted projective line X = X(p, A) then we have a family of
such algebras by varying the parameter sequence.

Theorem 8.2.2 The quiver of the endomorphism algebra of a tilting complex on a weighted
projective line X = X(p, A) is independent of A.

Proof. Assume that A and A" are two parameter sequences. Let T' be a tilting complex
on X(p,A) and € = ¢.K a tilting sequence for T. We have to show that the quiver of
¥ = End(T) coincides with the quiver of the endomorphism algebra ¥’ of the tilting
complex for the corresponding tilting sequence ¢ = ¢g.K' on X(p,A’). We write ¢ =
(Pr,...,P,) and € = (P},...,P.). The members of these sequences are identified with
the indecomposable projective modules over £ and ', respectively. Let (Si,...,Sn)
(resp.(S},...,S%) ) denote the corresponding sequences of simple ¥ (resp. ¥') modules.
Observe that ([Si],...,[Sx]) is a basis of Ko(X), dual to the basis ([P],...,[P.]), and
([S4),-.-,[S]) is a basis of Ko(X') = Ko(X), dual to the basis ([F],...,[P.]). Since the
classes of the corresponding projective modules coincide, we conclude that [S;] = [S;] for
all 7.

Consider the map v: {exceptional objects in D*(coh(X))} — Z which maps each
exceptional object X = E[m], E € coh(X), to its "copy number” m. In the same manner
we define a copy number map for the exceptional objects in D?(coh(X’)). We have v(P;) =
v(P!), by construction. Now, there are nonzero morphisms P; — S; and P/ — S}, hence
v(S:),v(S!) € {v(P),v(P) + 1}. 1t follows that v(S;) = v(S]), because otherwise either
0 # rk(S;) = —rk(S?) or rk(S;) = rk(S}) = 0 and deg (S;) = —deg(S), a contradiction.

We claim that dimgExt§(S;, S;) = dimeExt, (S}, S}) for all 4,5 and all p. Indeed by
[39, Chapter 1V, Lemma 1.11] (compare 9.6.4), there exists at most one py such that
Ext}(Si,S;) # 0 and at most one pj such that Mxemhwﬁ,w“,m“v # 0. Therefore we have

x(SLIS) = E(=1)dimeHom (S, 5,(p)
= MAI:“.&B‘QMVSMA%S%L

= (=1)P°dimExt®(S;, S;).

If x([Si],[S;]) = 0 then all Ext}(S;,S;) vanish and the same holds for all Ext%, (S}, S}).
On the other hand, if x([Si], [S;]) # 0 then po = v(S;)—v(S;) or po = v(Si)—v(S;)+1 and

the sign of x([Si],[S;]) determines po uniquely. In the same way pj can be determined and
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the claim follows. Since the dimensions of the Ext'-spaces between the simple modules
give the numbers of arrows for the algebra, the proof is finished. n]

Remark. Observe that the proof gives more; for the endomorphism algebra of a
tilting complex on a weighted projective line X = X(p, A) all dimensions of the spaces
Ext%(S:, S;) between the simple £-modules are independent of A.

Corollary 8.2.2 The global dimension of the endomorphism algebra of a tilting complex
on a weighted projective line X = X(p, A) is independent of A. u]

Theorem 8.2.3 Let E be an exceptional vector bundle on a weighted projective line X =
X(p,A) and H the hereditary algebra such that the right perpendicular category E* is
equivalent to the category of modules over H. Then H is independent of A.

Proof. For a fixed choice of parameters A we consider an exceptional vector bundle
on X = X(p,A) and the hereditary algebra H such that E' is equivalent to mod(l).
Denote by (Si,...,S.,-1) a complete exceptional sequence in D*(E*) consisting of the
simple H-modules, in some order. Then ¢ = (Si,...,S:-1, F) is a complete exceptional
sequence in D*(coh(X)), therefore ¢ = ¢.K for some element g € G,,.

For another choice of parameters A’ we have the exceptional sequence ¢ = ¢ K' =
(Si,...,5"_,,E") in D°(coh(X")) and the hereditary algebra H’ such that (E')* is equiva-
lent to mod(H’). Obviously the S! are H'-modules. Moreover, the sequence (Sy,...,S,_1)
is Hom-orthogonal, thus the sequence (S,...,S,_,) has the same property. It follows
from Theorem 3.1.5 that S7,...,S,_; are the simple H'-modules. Because ¢ and ¢ are
constructed using the same group element, the dimensions between the Ext'-spaces of the
corresponding simple modules coincide, which gives H and H' are-isomorphic. u]

Corollary 8.2.4 Let ¢ = (Ey,...,E.,Erq1,...,Es,Esyy,..., E,) be a tilting sequence
on a weighted projective line X = X(p,A) such that Ey,...,E, Eqq,...,E, are, up to
translation, finite length sheaves and E, 4, E, are, up to translation, vector bundles. Then
the algebras End(@:Z} E;) and End( 42 Ei) are independent of A.

Proof. Let A and A’ be two parameter sequences. We consider tilting sequences ¢ =
9K =(E,...,E Epr,... By Esyy, ..., Ey) on X = X(p, A) and

€ =gK' = (E|,.. E/,El,,...,EL,E..\,...,E}) on X' = X(p,X'). By assumption,
tk(E)) = ... = tk(E,) = tk(E,41) = ... = tk(E,) = 0 and rk(E,4+1) # 0, rk([,) # 0.
Note that the corresponding objects in D*(coh(X’)) have the same ranks.

We denote by v the "copy number maps” for D*(coh(X)) and Db(coh(X’)) as in the
proof of 8.2.2. Let C (resp. C') be the right perpendicular category formed in coh(X)
(resp. coh(X')) to the sheaves E,[—v(E,)], Espi[~v(Est1)), - - -y En[—v(Ey)], (resp.

v (ED) By [~ v(EL ), - EL[=v(EL))). We deduce from 2.4.2 and 8.2.3 that C =
C’' = mod(H) for some hereditary algebra H.

Furthermore, the sequences (E),...,FE,_1) and (Ej,...,E._,) are tilting sequences
in D*(mod(H)). Now, the classes [FE;], [E] coincide and determine unique exceptional
H-modules M; such that E; = M;[n;] and E! = M,[n!], for i = 1,...,s8 — 1 (compare

3.4.1). Since € and ¢ are constructed using the same group element we also have n; = n!.
Therefore End(@:Z! E;) and End(@:Z} E!) are isomorphic.

=1
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Forming left perpendicular categories one shows dually that End(@®_,,, E;) is inde-
pendent of A. O

Theorem 8.2.5 Let T' be a lilting compler on a weighted projective line X = X(p, A),
where p = (p1,P2y---,p), all p; > 2 and t > 4. Then ¥ = End(T) is representation-
infinite.

Proof. Suppose that for a certain choice of parameters X there is a tilting complex N_M
in D*(coh(X(p, X)) such that M> m:&ﬂyv is representation-finite. Let

A =gK=(EN... EMNEX,,.. B}

be a tilting sequence for TA. We assume that, up to translation, EW is a vector bundle

and @w\v: cey mw\_/ are finite length sheaves.

By 8.2.1 there is a tilting sequence A= 9K = Am_\/ - m,n/ muvt s .mwv for each
parameter sequence A. Note that the ranks of the are independent of A. Moreover,
a tilting sequence contains at least two vector U::&mm hence s > 1.

Form = s—1,...,n we define M\/ End(®7 m\/v By8.24,I'= M>m is independent

of A. Now the algebra MW is given as a one-point coextension T&Zﬁ of I' by a I'module

EA

M. The dimension vector of M equals
v = (dimgHom(E}, EX), ..., dimeHom(ED,, EM))

and is independent of A. By assumption A s representation-finite, hence I' is represen-

tation-finite as a factor algebra of £A. But then there are only finitely many non-
isomorphic I'-modules of dimension vector v. Hence there are only finitely many iso-
morphism classes of algebras M..\/.

Writing each algebra MW as a one-point coextension of MWL, m=s+1,...,n, we
conclude in the same way that there are only finitely many isomorphism classes of algebras
M:y.. Consequently, there are, up to equivalence, only finitely many categories of the form
Db(coh(X(p,A))) with fixed weight type p. For ¢ > 4 this gives a contradiction to [75,
Theorem 2.3}, [30, Proposition 9.2]. )

Note that the proof above and its dual actually show that for a tilting sequence
e=(F,...,E,) on a weighted Eo_.mn:é line X = xAv,\/Y where p = (p1,p2,...,pt), all
pi > 2 and t > 4, the algebras End(@!7) E;) and End(®?_,E;) are representation-infinite.

We remark also that for wild weighted projective _Emm with ¢t = 3 there are tilting
complexes with representation-finite endomorphism algebras.

8.3 Branch enlargements of concealed-canonical al-
gebras

In this section we consider branch enlargements in the sense of Assem and Skowroriski of
concealed-canonical algebras.
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In [2, Theorem 2.5] the representation-infinite algebras which are derived equivalent
to tame hereditary (resp. tubular) algebras were described as domestic (resp. tubular)
branch enlargements of tame concealed algebras.

In 8.4 and 8.5 we will give for the domestic and tubular case a handy criterion whether
or not the endomorphism ring of a tilting complex on a weighted projective line X is
representation-finite. Moreover, we show how in the representation-infinite case the char-
acterization of Assem and Skowronski can be obtained in an easy way considering tilting
complexes on X.

We refer to [2, 2.1 - 2.3] for the concept of branch enlargements. We also use the
terminology developed there.

Definition 8.3.1 A (tilting complex on a weighted projective line X
T=T,-m]®.. 6T H[-1|6T: dTo @ Th[1] B ... ® Tny[ns) (*)
with Ty € vect(X) and T; € cohg(X) for all —ny < i < ny, is called to be of the form (*).

8.3.2 Let ¥ be a concealed-canonical algebra, realized by a tilting bundle on a weighted
projective line Y = X(p’,A), p’ = (p},...,py). Let t be an integer with ¢t > t'. For
each i = 1,...,t we select a sequence S!(j), j = 1,...,h;, of h; > 0 pairwise non-
isomorphic simple objects from modg(X4) = cohg(Y), which are concentrated at );. Note
that we allow that p; = 1, accordingly that S!(j) is an ordinary simple object from
modo(X4) = cohg(Y).

Let J'(¢) [1 J”(7) be a decomposition of J(i) = {1,..., h;} into, possibly empty, disjoint
subsets. Further we select for each j € J'(i) (resp. j € J"(z)) an extension branch B!(j)
with extension root (resp. coextension branch B}(j) with coextension root) a;(j) of length
(7).

The algebra ¥ obtained from ¥ by forming first the multi-point extension-coextension
[DSi(7) rm%. HE+[SiG rm_;‘..‘.?

and then rooting each extension branch B!(j) in DS!(j) (resp. each coextension branch
B{(7) in S!(7)) is said to be obtained from L, by branch enlargement.

If all J'(¢) are empty and all BY(j) are truncated branches in the sense of Ringel [100],
then ¥ is a branch coenlargement as considered in [75] and therefore an almost concealed-
canonical algebra. If, for each i = 1,...,t, one of the sets J'(7) or J”(7) is empty and
in addition all B!(j) and BY(j) are truncated branches, then ¥ is a semiregular branch
coenlargement as studied by Lenzing and Skowronski in [79]. In particular, these algebras
were shown to be quasitilted of canonical type (compare 9.6.1).

We put

~ —

hy
pi=pi+Y Gj
j=1

for 7 = 1,...,t. Moreover, we let X be the weighted projective line which attaches the
weights p; to the points \; forz = 1,...,t. Note that we are identifying the sets underlying
X and Y with the projective line over k.
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Theorem 8.3.2 (i) If T is a lilting complez of the form (*), then ¥ = End(T') is obtained
by branch enlargement from the concealed-canonical algebra £y = End(T}).

(it) If ¥ is an algebra obtained from a concealed-canonical algebra ¥y by branch en-
largement, then ¥ can be realized as the endomorphism algebra of a tilting complex of the
form (*) on a weighted projective line.

Proof. (ii) For each i = 1,...,t we arrange the simple sheaves S!(j) on Y in such a way

that S{(j) = ﬂﬂsx:v‘m for some simple sheaf S] concentrated at A; and where
0 <m(l) <mi(2) <.+ <mi(h;) < p,

We further put m;(j) = mi(j) + I_, bi(r). Let S; be a simple sheaf on X concentrated
at A\;. We can select mutually non-adjacent segments

L) = {S:(1), xSid) - oSGy G =10k

of simple sheaves on X concentrated at A;, where S;(j) = ﬂm::srw.,.
Now, the perpendicular category

HLG), i= 1.t j e JOINTG), i=1,...,t, G € ()}

is equivalent to coh(Y) and we will identify these two categories. Recall that £ is realized
by a tilting bundle T on Y.

Note further that, for j € J”(j), the object S;(j)1“)+! belongs to coh(Y) and agrees
with the simple sheaf S!(j) from coh(Y), and dually, for j € J'(z), the object 7 S;(j)1&-()+1]
belongs to coh(Y) and agrees with the simple sheaf S!(j) from coh(Y).

Denote by C;(j) the subcategory of coh(X) generated by Z;(j). Then C;(j) can be
identified with the module category over a path algebra for a Dynkin quiver Q;(j) of type
Aq¢,(j) with linear orientation.

According to [1] and [44] each extension branch B{(j) (resp. coextension branch B;'(j))
can be realized as a tilting complex U;(7) (resp. Vi(j)) in D*(mod(kQ;(5)).

Let j € J"(z). For simplicity of notation we write kQ.(5) = H, B'(j) = B, &;(j) = ¢,
Vi(j) = Vand S,(j) = S. We can assume that V is of the form

V=vt—mle...o V=1 VO e v ... viim],

where all V") are in mod(H), the coextension root a is represented by a module, say M,
which is a direct summand of V(%) and also the vertex corresponding to a, if it exists,
has this property. Note that M is an injective H-module. Further, for an indecomposable
direct summand N of V(® such that Hom(M, N) # 0, N is injective in mod(H) and the
vertex of N in the coextension branch corresponds to some a", n > 0. Conversely, each
vertex of B of the form a™, n > 0, is represented by an indecomposable direct summand
of V© which is an injective H-module.
The situation is illustrated in the following picture
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slesn)

mod(H)[1]

S

Dually, we can realize each extension branch B!(j) by a tilting complex U = U,(j) in
D*(mod(kQ;(j)) of the form

U=U""-n]&...0 U -1]a U0 e U®]...0™ )

where all U") are in mod(kQ;(j)), the extension root a is represented by an object, say
M'[-1], which is an indecomposable direct summand of U(=Y[—1], and also the vertex
corresponding to a~!, if it exists, has this property.

We claim that

' Q= &)

i=1,...t, j€J(3) i=1,

Bi(j)eTy® B B!

, JE€J(i)

is a tilting complex on X such that End(f2) is isomorphic to .

First, by the choice of the S;(j) we have Homp(E, E'[n]) = 0, for n € Z, if E and E’ are
indecomposable direct summands of T of finite length belonging to different extension or
coextension branches. Therefore in order to show that T satisfies the vanishing condition
for a tilting complex it is enough to prove the following assertions.

(a) Exty(E,Ty) = 0 for each summand E of V) for all s and all V = V,(j).

(b) Homy (T4, E) = 0 for each summand E of V) for s # 0 and all V = V,(j).

(c) Homx(E,Ty) = 0 for each summand E of U®) for all s and all U = U;(j).

(d) Exty(E,Ty) = 0 for each summand E of U®) for s # —1 and all U = Uy(j).

Assertion (a) is a consequence of the fact that Ty isin {Z:(j), t = 1,...,¢, j € J"(i)}*.

Now, if E is an indecomposable direct summand of some V) with s # 0, then E is
not injective in mod( H). Furthermore, there is an exact sequences in mod(H) of the form

0 (S) s E- 188 —0

with 1 <a<b<{¢-1and 1 <€ <{ Each F € vect(Y) satisfies 0 = Exty (7S, I)
DHomy (F, 7£*'S) for 0 < ¢ < € — 1, thus applying the functor Homy (T}, —) to the exact
sequences above we obtain Homx(7, E) = 0, which proves (b). Dually one shows (c)
and (d).

Observe that 0 consists of pairwise non-isomorphic indecomposable objects whose
number agrees with the rank of the Grothendieck group Ko(X). Consequently, § is a
tilting complex on X.
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Finally, End(©2) = ¥ follows from the definition of a branch enlargement and the
following facts: )

(e) The natural epimorphism St _, S induces an isomorphism
Homyx (F, SE+1) =5 Homx(F,SM), for each F € vect(Y), 1 < h < € and for S = Si(j),
J € J"). .

(f) Homx(Ty, E) = 0 for each indecomposable direct summand E of Vo) = —\..ASC.V
which does not correspond to a vertex of the form o, n > 0, in the corresponding
coextension branch.

(g) The natural monomorphism Pl(r£1S) < 7 S induces an isomorphism
Extl(rgSt1 F) =5 Exth(W(+£1S), F), for each F € vect(Y), 1 < h < £ and for
§=38ij),j€J(). .

(h) ExtL(E,T4) = 0 for each indecomposable direct summand E of Ut = Q_.T:C.v
which does not correspond to a vertex of the form «™, n > 0 in the corresponding
extension branch.

Assertion (e) follows by applying the functor Homx(F, —) to the exact sequence

0 — [EH1-R(rLS) — St 5 S 0.

Indeed, we have 0 = Extl(S1, F) = DHom(F, =xS!4). Therefore the monomorphism
+1-h(7tS) s 758 yields Homx(F+'-M7LS) = 0. On the other hand we have
Exth (FH1-h ££S) = DHomy (K ~Hr{~1S, F) = 0, and (e) follows.

The assertion (f) follows by the same kind of arguments as in the proof of (b). Dually
one proves (g) and (h) which completes the proof of assertion (ii).

(i) Assume that T' is of the form

T=T -] ®...0 T [-1]®T: ®To®Ti[1]® ... @ Tn,[n

with T, € vect(X) and T; € cohg(X) for all —n; < i@ < ny. Then the perpendicular
category

M e Toa Y O {5 T 5 Lns )

is equivalent to a category of coherent sheaves on a weighted projective line Y and T
can be considered as a tilting bundle on Y.

The finite length parts are, by [1], tilting complexes B;(j) in wings of the tubes of -

cohg(X) in such a way that their segments of simple objects are non-adjacent. Accordingly
the By(j) are branches and the statement follows in the same way as in the proof of (i)
from the definition of a branch enlargement. O

Remark 8.3.3 Let © be an algebra obtained from a concealed-canonical algebra Ly by
branch enlargement. Then the algebra £y is uniquely determined, provided the weighted
projective line X is not tubular.

Proof. The statement follows from the uniqueness, up to sign, of the rank function [75,
Lemma 2.5]. o
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8.3.4 For a tilting complex T' = @, Tu[n| such that T, € coh(X), with endomorphism
ring £ = End(T), an indecomposable object X of D*(coh(X)) belongs to mod(X) if and
only if

Homp(T, X[n]) =0 for each integer n # 0.

Since each indecomposable object in D?(coh(X)) is, up to translation, a coherent shealf,
mod(X) is the additive closure of all

mod(Z) = {X[j] € coh(X)[j] | Homx(T:, X) =0, i # j, Exty(T:, X) =0, i # j — 1}.

For a branch enlargement of a concealed canonical algebra we obtain the following
global description of the module category.

Proposition 8.3.4 Let T =T_,, [-n]® .. @ T[] Ty @ To® Ti[1] @ ... B Ty, [n2]
be a tilting complex on a weighted projective line X with Ty € vect(X) and T; € cohg(X)
for all —ny < i < ny and let ¥ be the endomorphism algebra of T.

Then each indecomposable L-module belongs to one of the following subcalegories

(a) Eomm_ﬁmv consisting of all E[j], where E € coho(X) satisfies Homx (T4, E) = 0,
Homx(T;, E) = 0 fori # j, Exty(TyE)=0 fori#j—1; j=-n,...,—1,

(b) mod () consisting of all E € vect(X) satisfying Exty(Ty, E) = 0, Exti (T, E) =0
fori# —1,

(¢) modo(Z) consisting of all E € cohg(X) satisfying Homx(T;, E) = 0 for i # 0,
Exty(Ti, E) = 0 fori# —1,

(d) mod_(E) consisting of all E[1], where E € vect(X) satisfies Homx(T4, L) = 0,
Exty(Ti, E) =0 fori # 0.

(f) _:ommxmva consisting of all E[j], where E € coho(X) satisfies Homx(Ty, E) = 0,
Homx(Ti, E) = 0 fori # j, Exty(THE)=0fori#j—1; j=1,...,na+1.

The subcategories Eomm:Mf j=—-ny,...,—1,1,...,n0+ 1, have only finitely many
indecomposable objects.

Moreover, the objects of the additive closure from T (resp. 7xT[1] ) are the projective
(resp. injective) L-modules.

Further, in the ordering Bom_cl:.:mv. sy EomﬂaL:Mv_ mod, (%), mody(X), mod_(X),
Eomm_ﬁmv_ T Eomw.i:ﬁmv there are no nonzero morphisms from the right to the left. O

Proof. Using the notations above, each indecomposable ¥-module belongs to one of the
subcategories modV!(£). Let us denote

Eomw_ﬁmv = cohp(X) N modV)(%)
mod4 (X) vect(X) N mod®(£)
mod_ (%) vect(X) N mod!'(£).

Il

For simplicity of notation we write mody(X) instead of _:oa_rc_ﬁmv.

Since there are no morphisins from finite length sheaves to vector bundles, we obtain
the desired characterizations for mod, (X), modg, mod_(¥) and _:ca_w_. It is also clear
that :Hoﬁ_m:mv has only finitely many indecomposables.
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We show that, for j # 0,1, the subcategories Eoﬂ_w:mv have only finitely many inde-
composable objects and that they all are, up to translation, finite length sheaves.

According to 2.4, for j = —ny,...,—1, the subcategory Eommxmv is contained in the
perpendicular category

A= (T, To® T @ ... 0 To,)",

which is equivalent to a module category mod(H) for a hereditary algebra H. We see also
that there is a tilting complex

T =T o[- ®... 0 T4[-1]

in D*(A). Now, the endomorphism algebra of 7" consists of branches which implies that
H is a product of algebras H, x ... x H,, where H; is the path algebra of a Dynkin
quiver of type A, i = 1,...,r. Consequently, each EcaEAMV has only finitely many
indecomposables. Furthermore, for each 7, the objects in mod(H;) corresponding to finite
length sheaves form a successor closed subcategory having the shape of a wing W;. But
mod(l;) = W;, because otherwise T cannot be a tilting complex for H. Thus Bomm:mv
consists only of objects of the form E[j] with E € coho(X). Finally, it is easy to see that
they are characterized by the conditions given in the theorem.

For j = 2,...,ny + 1, the subcategory Boaw_ﬁmv is contained in the perpendicular
category (T_p, @ ... @ T-1 ® To ® T4)* and we can proceed analogously.

The other statements are obvious. o

8.3.5 We define

i
.

End(T-pn, [-11] @ ... ® T4 [-1] D T}),
End(Ty & To ® Ty[1] @ ... & T [n2]).

Obviously £; and %, are full convex subcategories of £. The following proposition follows
easily from the Proposition 8.3.4.

Proposition 8.3.5 The support of an indecomposable ¥-module either belongs to ¥y or
else to X, a

Corollary 8.3.5 ¥ is tame if and only both ¥; and X, are tame. =]

8.3.6 We show that an algebra ¥ obtained from a concealed-canonical algebra by branch
enlargement admits a separating family of standard (see [100]) tubes. This generalizes
results of [75], [78] and [79].

Let mod'(2) (resp. mod’(Z) ) denote the additive closure of the union of the sub-
categories Boa_w;mv_ j = —-np,...,—1 and mody(X) (resp. mod_(X¥) and Eomw_AMv,
j=1,...,ny + 1). Then each indecomposable £-module belongs to exactly one of the
subcategories mod'(Z), mody(X), mod’(X) and in this ordering there are no nonzero
morphisms from the right to the left.
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Theorem 8.3.6 Let ¥ be an algebra obtained from a concealed-canonical algebra by
branch enlargement.

(1) The indecomposables from mody(X) form a family of standard tubes.

(ii) Each morphism from a module M of Ecmgmv to a module N of mod” () factors
through a module U from mody(X).

(iii) Each Auslander-Reiten component of mod(X) has support-in ¥, or %, .

Proof. (i) According to Proposition 8.3.4, modg(X) is obtained from cohg(X) by ray and
coray deletion, which implies (i).

(i1) Let f: M — N be a nonzero morphism with M € Bomxmv and N € mod’(X).
Clearly we can assume that M and N are indecomposable. Then M belongs to mod, (¥)
and N to mod_(%).

Now we can follow the arguments of [29, Corollary 2.7, Proposition 4.3]. Write M =G
and N = F[1] for F,G € coh(X). There is an exact sequence

0 F>F5E—0

such that Exty(G,F) = 0 and E belongs to a fixed component C of cohg(X). Applying
the functor Homx(G, —) we see that f € Homg(M, N) = Exty(G, F) can be lifted to a
morphism u € Hom(G, E). Obviously, if C is a component which does not contain direct
summands of T' then E belongs to mode(X).

(iii) follows from Proposition 8.3.5 and the fact that the indecomposables from mody( )
form a union of full components. u]

Observe that a component of modg(X) can contain both projective and injective mod-
ules.

8.4 Tilting ooaamxmm for domestic weighted projec-
tive lines

8.4.1 The following theorem deals with algebras derived equivalent to tame hereditary
algebras.

Theorem 8.4.1 Let T be a tilting complez on a domestic weighted projective line X with
endomorphism ring ¥. Then the following conditions are equivalent:

(i) T is, up to translation in the derived category, of the form the (*) (see 8.3.1).

(i1) ¥ is a obtained from a concealed-canonical algebra by branch enlargement.

(iii) ¥ is representation-infinite.

Proof. (i) & (ii) by Theorem 8.3.2.

(i) = (iii) By 7.1.3 the endomorphism algebra of a tilting bundle ©, = End(7}) is
representation-infinite. Hence ¥ is representation-infinite, because it contains ¥, as a
convex full subcategory.
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(iii) = (i) Since ¥ is of domestic weight type, the derived category D*(coh(X)) is
equivalent to the derived category D*(mod(A)) of modules for a tame hereditary algebra
A = kQ. Therefore ind(X) is the union of all

ind"($) = (X = M(n], M € ind(A) | Homp(T, M[n +1]) # 0 for all ¢ # 0}.

Observe that only finitely many ::_?:Mv are nonzero.

Suppose that 1" has a direct summand of the form E[m] for some preprojective A-
module E and m € 2. We claim that in this case ind™(5) is finite for n # m. For this it
suffices to show that Hom(E, M) # 0 for almost all indecomposable A-modules M. We
further can assume that E is a projective A-module, corresponding to a vertex z. Then
the quiver obtained from @ by removing z is a disjoint union of Dynkin quivers and the
fact above follows.

Similarly, if 7" has a direct summand of the form E’[m’] for some preinjective A-module
E' and some m’ € Z, then ind™ () is finite for n #m' + 1.

Now, assume that T is not, up to translation, of the form (*). Then T' has indecom-
posable direct summands E[i] and E’[j] satisfying one of the following three conditions:

(a) j #iri+ 1,

(b) j =1 and E is preprojective and E’ is preinjective.

(b) 5 =i+ 1 and both E, E' are preprojective or preinjective, or E is preprojective
and E' is preinjective.

In each case we conclude that all ind™(%) are finite, which gives a contradiction. 0O

8.5 Tilting complexes for tubular weighted projec-
tive lines

8.5.1 Let T' = @_,T; be a tilting complex on a tubular weighted projective line X such

that all T; are indecomposable in D*(coh(X)). Set @ = QU {oo}. On the set § we have
the natural order: (gy,n1) < (g2,n2) if and only if n; < ny or n; = ny and ¢ < ¢z. We
consider the function associating to each T; the slope and the copy number

v:{l,...,n} > Q@x1, v(z) = (gi,ni)

where T; = Ej[n;] for a coherent sheal E; of slope ¢;. Let (gy,ns) (resp. (ge,n.)) be the
minimum (resp. maximum) of the image of v. )

Definition 8.5.1 We say that the tilting complez T is in bad position if it satisfies the
following two conditions:
(a) There are iy,1, such that
(gs:m1 = 1) < v(i1) < (g5,m1) < (g, m2 — 1) < (i) < (v, m2)
for some my,m, € 7.
(b) There are j,,j; such that
Aﬁnuﬂi\u - : < QC.L < AQSSU < AQn,w:m - : < _\C.wv < A.Nn.v.:\mv

for some m,m4 € 1.
Otherwise T' is called in good position.
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Observe that under the assumption ¢, = oo (resp. g = c0) condition (a) (resp.
condition (b)) is nothing then the statement that T' contains vector bundles from different
copies of coh(X) in the derived category.

Let us denote by Ty (resp. T.) the direct sum of all summands T} of T' such that
v(3) = (gs,ms) (resp. v(i) = (ge,ne)) and consider the decomposition 7' = T, @ 1" (resp.
T =T'@®T.). Finally, we write ¥ = End(T), £’ = End(7") and £" = End(T").

8.5.2 The following two theorems deal with algebras derived equivalent to tubular alge-
bras.

Theorem 8.5.2 Let T' be a tilting complez on a tubular weighted projective line X with
endomorphism ring ¥. Then the following conditions are equivalent:

(i) T is in bad position.

(ii) &' and £" are representation-finite.

(iii) ¥ is representation-finite.

Proof. (i) & (ii) By means of an automorphism of D*(coh(X)) (see Chapter 4) we can
assume that g, = oo and ny = 0. In this case the indecomposable objects of T, form
tilting objects in wings which are contained in exceptional tubes of cohg(X). Then the
left perpendicular category *Tj is equivalent to a sheaf category coh(Y) for some weighted
projective line Y of domestic weight type and T" can be considered as a tilting complex
in D*(coh(Y)). )

By 8.4.1, T" has indecomposable summands E[n] and E’[n’], with E, E’ € vect(Y)
and n # n’, if and only if £” is representation-finite. This proves that condition (a) is
equivalent to the fact that ¥ is representation-finite.

Dually one shows that condition (b) is satisfied if and only if ¥’ is representation-finite.

(ii) = (iii) Applying if necessary, an automorphism of D*(coh(X)) we can again assume
that gy = co and npy = 0. Then T = To® T[] @ ... @ T;[r] with T, = Ty € cohg(X) and
T; € coh(X) for 1 <7 < r. We have r > 2, because otherwise 7" is, up to translation, a
tilting sheaf and then ¥ is an almost concealed-canonical algebra. This implies that ¥
is representation-infinite, contrary to our assumption.

We claim that the support of each indecomposable £-module belongs either to %’ or
to £”. Indeed, each indecomposable £-module belongs to a subcategory modVl(%) =
coh)(T)[j] where coh(T') = {F € coh(X) |Homx(T}, F) =0 fori # j, Exti(T, F) =
0 fori # j — 1}. Now, for j > 2 the conditions Homx (T, I') = 0 and Exti(7y, F') = 0
imply that the support of each indecomposable M € modVl(£) belongs to £”. On the
other hand, for j < 1, we conclude from Homy (7}, F') = 0 and ExtL(T}, F) = 0 that
the support of each indecomposable M € modU/(£) belongs to £'. Consequently ¥ is
representation-finite.

(i) = (ii) is obvious. o

Theorem 8.5.3 Let T' be a tilting complezr on a tubular weighted projective line X with
endomorphism ring ¥. Then the following conditions are equivalent:

(i) T is in good position.

(ii) There is an automorphism ® € Aul(D*(coh(X))) such that ®(T') is of the form
(*) (see 8.3.1).



100

(iii) ¥ is oblained from a concealed-canonical algebra by branch enlargement.
(iv) ¥ is representation-infinite.

Proof. (i) = (ii) Suppose first that 7' is a tilting complex which does not satisfy the
condition (a). Let (gs,n) be the minimum of the image of v for T. Then T = o(T)
for some tilting complex T, having as minimum for the image of v the pair (oc0,0), and
an automorphism ® € Aut(D*(coh(X))) being the composition of the ny-th power of the
translation functor and a telescopic functor ®gs, co.

Now, if the image of v for T contains two pairs (q1,n1), (g2,n2) With g1 # 00, g2 # oo,
then n; = n,. This is a consequence of the fact that ® preserves the order on Q. Therefore
the objects of T corresponding to vector bundles are in the same copy of coh(X) in the
derived category, and consequently T is of the form (*).

Similarly, in case T does not satisfy the condition (b) one shows that T' = ®(T) for
some tilting complex T of the form (*) and an automorphism ® € Aut(D(coh(X))) being
the composition of the n.-th power of the translation functor and a telescopic functor
dg,, 00.

(ii) = (iii) follows from Theorem 8.3.2.

(iii) = (iv) is obvious.

(iv) = (i) follows from Theorem 8.5.2. o

8.5.4 Using other methods algebras derived equivalent to tubular algebras were studied
by Barot and de la Pefia [7] and by Barot [6].

8.5.5 We have seen that for a domestic or tubular weighted projective line X the endo-
morphisim ring of a tilting complex which contains vector bundles from different copies of
coh(X) (in the tubular case after application of an automorphism) is representation-finite.
The following example shows that this is no longer true if X is wild.

Example. Let X be a weighted projective line of weight type (2,2,2,2,2). The
complex
5
T = BO(#) & 0 & O(-I)1]
i=1
is a tilting complex. Observe that 7' is obtained from the canonical tilting sequence by
mutation of O to the right end. The quiver of £ = End(T") is the following

lo

20

.,,va
6 7

10

50

while the relations involve the parameters (note that dimyExty(O(&:), O(-@)) = 2 for
t=1,...,5). Obviously ¥ is wild. o

Chapter 9

Hyperelliptic weighted projective
lines

In this chapter we will study tilting complexes T and their endomorphism rings ¥ for
weighted projective lines of type (2,...,2), t entries, in detail. We are mainly interested
in the hyperelliptic case, however we allow also that ¢ < 4. First we describe properties
which are independent of the representation type, later we will turn our attention to those
tilting complexes T' having tame endomorphism rings.

9.1 Structure of a tilting complex on a hyperelliptic
weighted projective line

9.1.1 In our further investigation the Riemann-Roch theorem will play an important
role. We can rephrase Proposition 2.3.5 for a partial tilting sequence of length 2 in the
derived category in the following way.

Proposition 9.1.1 Let X be a weighted projective line of type (2,...,2) and let (X,Y) be
a partial tilting pair in D*(coh(X)). Then

rk(X)  rk(Y)

dimiHomp(X,Y) = deg(X) deg(Y)

Proof. Up to translation in the derived category we have the following three possibilities:
(a) X,Y € coh(X), (b) X € coh(X) and Y € coh(X)[l], (c) X € coh(X) and Y € coh(X)[n],
for some n # 0, 1.

In the case (a) the result is proved in Proposition 2.3.5.

To deduce the formula in the case (b), assume that Y = Z[1] for some Z € coh(X).
Then Homp(X,Y) = Exty(X, Z). Furthermore from Proposition 2.3.5 we conclude that

tk(X)  rk(Z)

~dimiEX (X, 2) = | 1N e (2)

On the other hand rk(Z) = —rk(Y) and deg(Z) = —deg(¥) which establishes the for-

mula.
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Finally, in the case (c) we assume that Y = Z[n] for some Z € coh(X) and some
integer n # 0,1. In this situation we have Homp(X,Y) = 0 by the heredity of coh(X).
Now if u(X) < u(Z), we would have Homx (X, Z) # 0 by Proposition 2.3.5 (ii), contrary
to the fact that (X,Y) is a partial tilting pair. Furthermore, by Proposition 2.3.5 (iii),
w(X) > p(Z) implies Exty(X,Z) # 0, which again gives a contradiction. Therefore
wW(X) = pu(Z) = p(Y). We conclude from Theorem 3.5.1 that, up to sign, rk(X) = rk(Y)
and deg (X) = deg(Y'), and the right hand side of the formula vanishes, too. n]

Corollary 9.1.1 Assume that A and B are exceptional sheaves on a weighted projective
line X of type (2,...,2).

(1) Let A@ B be a partial tilting sheaf. Then Homx(A, B) # 0 if and only if p(A) <
w(B).

(ii) Let A @ B[1] be a partial tilting complex. Then pu(A) > p(B) and equality holds
if and only if Ext} (A, B) = 0. O

9.1.2 As a consequence of the result above we show that the width of a tilting complex
on X is bounded by 2.

Theorem 9.1.2 Let T be a tilting complex on a weighted projective line X of type (2, ...,2).
Then T is, up to translation, of the form T = U & V(1] where U,V € coh(X).

Proof. Since the algebra ¥ = End(T') is connected, the indecomposable direct summands
of T belong to consecutive copies of coh(X) in the derived category. Assume, contrary to
the assumption, that 7' is spread over at least three copies. Then by means of a translation
we have summands A, B[1], C[2] of T' for some indecomposable sheaves A, B, C' € coh(X).

From 9.1.1 we deduce that p(A) > p(B) and p(B) > u(C). Moreover, applying
9.1.1 to A and C we see that u(A) = u(C).

It follows that all indecomposable direct summands of T" have the same slope. This
implies that ¥ is not connected, a contradiction. a

Remark 9.1.2 The method of the proof carries over to connected partial tilting complexes
on weighted projective lines X of type (2,...,2).

9.1.3 Let T = U & V[1] be a tilting complex on a weighted projective line X of type
(2,...,2) with U,V € coh(X). Decompose T into a direct sum of indecomposable objects
T = @;¢; Ti and denote by qi, 2, ..., gn, (resp. q1,q3, ..., q5,,) the pairwise different slopes of
the indecomposable direct summands of U (resp. V[1]). Assume that q; < g2 < ... < ¢n,
and ¢} < ¢j < ... < ¢, and set n = ng + n;. Consider the following function defined on
the set of vertices of the quiver @ for £ = End(T)

$:Qo— {1,...,n}

given by s(T;) = a if T; is an indecomposable direct summand of U such that p (7}) = ¢a,
and s(1}) = ng+bif T; is an indecomposable direct summand of V(1] such that u (7}) = g.
Moreover, write ¢; = w.p with d;, r; a coprime pair of integers and r; > 0 and do the the same
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for g/. Denote by i € {1,...,no} [resp. i; € {1,...,m1}] the unique index characterized by
the following property:

(*) if ¢i > gi, then r; <rj, and if ¢; < g;, then ry < riy (resp. if ¢/ > g/ then r! < 1/
and if ¢! < g}, then 1 <r!). ' o

Furthermore, let T<%o [resp. T>%] be the full subcategory of coh(X) formed by all
objects of U of slope less [resp. greater] than g;, and T<% [resp. T>%] the full subcategory
formed by all objects of V(1] of slope less [resp. greater] than g;;- Finally, denote by
£<% = End(T<%), £>% = End(T>%), £<% = m:&ﬂﬁ.v and ©>% — m_::ﬂvi;
the corresponding endomorphism algebras .

The situation is illustrated in the following picture.

coh(X) coh(X)[1]
uuAa”. MVA"_
SENA WA
\\o 'o|“o/'
° o /o\ o
) e.:. . ) . qs, .

With the notations above we have the following properties for £ = End(T) = kQ/I.

Proposition 9.1.3 (i) dimiHomp(T;,T;) depends only on the slopes and the copy num-
bers of T; and Tj.

(ii) The quiver Q) has no oriented cycles. More precisely, for i # j there is a path from
T; to Tj in Q if and only if s(T;) < s(T}).

(i1i) If all pathes from T; to T; in Q belong to I, then s(T;) = 1 and s(Tj) = n.

(iv) Let both T; and T; be indecomposable direct summands of U (resp. V[1]). If
w(Ti) < p(T5) < qig (resp. p(Ti) < p(T5) < q;,), then there is a monomorphism T; — T}
W_:& @.%as S u(Ti) < p(Ty) (resp. qf, < p(Ti) < p(T})), then there is an epimorphismn

[
(v) The algebras £<%, £>%  $<% and £>% are hereditary.

Proof. (i) follows from the Riemann-Roch formula and the fact that rank and degree for
an exceptional sheaf are coprime, by Theorem 3.5.1.

(ii) and (iii) are consequences of 9.1.1.

(iv) By 2.3.3, each nonzero homomorphism between indecomposable direct summands
of U is a monomorphism or an epimorphism. Moreover, in a chain of nonzero homomor-
phisms between direct summands of U an epimorphism cannot be followed by a monomor-
phism. Furthermore we know from Theorem 3.5.1 that all exceptional objects of a fixed
slope have the same rank.

Now, assume that T; and T} are indecomposable direct summands of U such that
w(Ty) = g < 1 (T5) = g2 < gip- 1f g2 = gi,, then by (ii) there is a homomorphism T; — T
which by the choice of iy is a monomorphism. If g, # ¢;, we choose an arbitrary direct
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summand T of slope gi,. Then we have a monomorphism Tj < T;. Further, there is a
nonzero homomorphism 7; — 7T, which by the argument above is a monomorphism, as
well. The other statements are proved by the same method.

(v) Let us show that £<% is a hereditary algebra. Denote by T% the direct sum
of all direct summands of U of slope g;,. If g, = oo then 7<% = 0, by the choice of
gio, and there is nothing to show. Thus, we assume that g;, # oo, in this case the right
perpendicular category (T%0)* is equivalent to a category of modules over a hereditary
algebra Il. Now T<% € (T%0)*, applying (ii) and condition (i) of the Definition 8.1.1.

We show that 7<% is projective in (T%)*. For this let A be an indecomposable direct
summand of T<%. Choose an arbitrary direct summand A’ of T%. By (iv) there is a
monomorphism f : A < A’: Now, for an arbitrary object X € (T'0)*, f gives rise to an
exact sequence Extl(A’, X) = Exty(A,X) — 0. By assumption Exty(A’, X) = 0, and
therefore Exty(A, X) vanishes, too. Hence mxpmﬂsﬁk:&as“lv = 0, which shows that
¥ <% is hereditary. The other statements are proved analogously. u]

9.1.4 We denote for an exceptional pair (X,Y) in D*(coh(X)) by hx,y the k-dimension
of Homp(X,Y).
In 9.6 we will need the following lemma

Lemma 9.1.4 Let X be a weighted projective line of type (2,...,2). Then there is no
partial tilting sequence (A, B,C) such that hap =2, hpc =1 and hyc = 0.

Proof. Assume to the contrary that there is a partial tilting complex A® B® C satisfying
the conditions above. Then by 9.1.2, A and C' are in consecutive copies of coh(X) in the
derived category. Moreover, by 9.1.1, u(A) = u(C). Since for an exceptional sheaf rank
and degree are coprime, we infer that rk(C) = —rk(A) and deg (C) = —deg(A). Hence
the Riemann-Roch formula yields

_ _ | rk(A) tk(B) = =| BB ~tk{d)
2=hap= deg(A) deg(B) and 1=hpc = deg (B) —deg(A) |’

a contradiction. 8]

9.2 Diophantine equations

It seems to be typical that tilting procedures in a geometrical context produce certain dio-
phantine equations. In the case of the projective plane P? the Markov equation mentioned
in the introduction plays an important role, for other del surfaces there are equations of
similar type [104], [89].

In this section we deduce two types of diophantine equations for (partial) tilting com-
plexes on hyperelliptic weighted projective lines, which have essential consequences for
the structure of the endomorphism algebras of these complexes.

Proposition 9.2.1 Let (A, B,C) be a partial tilting sequence in D*(coh(X)) for a weighted
projective line of type (2,...,2). Then

hagc - tk(B) = hap - 1k(C) + hpc - tk(A).
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Proof. Consider the matrix

(A)  1k(B) tk(C)
(A) tk(B) tk(C) |.
deg(A) deg(B) deg(C)

rk
M = rk

Laplace expansion yields

0 = |M|
k(B) rk(C) tk(A)  tk(C) rk(A) k(B)
= tk(4)| | )| - k(B !
KA deg (B) degiicy |~ ) dex(A) deg(C) | MW gepiaT deg (B)
Hence the proposition follows from Proposition 9.1.1 . m]

Corollary 9.2.1 Assume that A,B,C,X,Y are exceptional sheaves on a weighted pro-
jective line X of type (2,...,2).

(1) Let A® B ® C be a partial tilting sheaf on X such that p(A) < p(B) < p(C). If
hap > hac and hpc > hac, then there is a monomorphism A — B and an epimorphism
B-C.

(i1) Let A® B® C be a partial tilting sheaf on X and assume that there is a monomor-
phism A — B and an epimorphism B — C. Then hyc < 2max(ha,p,hpc)-

(1ii) Let A® X[1] @ Y[1] be a partial tilting complex on X such that there is an epi-
morphism X — Y. Then hyxp) > hayp)

(tv) Let B® A ® X[1] be a partial tilting complex on X such that there is a monomor-
phism B < A. Then hy x> hp xp)-

Proof. (i) We infer from the Riemann-Roch formula that h4 ¢ # 0. Thus the proposition
yields rk(B) = nlw,w rk(A) + nbm -tk(C) > rk(A) 4 rk(C). This is impossible in case there
are both monomorphisms (resp. both epimorphisms) from A to B and from B to C.

(ii) Suppose to the contrary that hac > 2max(hap, hpc). Certainly we can assume
that rk(B) > 0. The assumptions imply that rk(B) > rk(A) and rk(B) > rk(C). Thus

hac-rk(B) > 2max(hap,hsc)-rk(B)

> max(hag, hpc) - (rk(A)+ rk(C))
>

hasg-tk(C) + hpc - rk(A)

which contradicts the proposition.

(iii) Observe first that hs x;) # 0. Indeed, otherwise p(A) = p(X) < pu(Y), which
gives rise to a nonzero homomorphism from A to Y, contradicting condition (i) of Defini-
tion 8.1.1. Denote by K the kernel of an epimorphism X — Y. Application of Homx(A, —)
to the exact sequence 0 = K — X — Y — 0 yields hy xpp > hayp). Now assume that

haxp) = haypy. According to the proposition, we get rk(Y) = rk(X) + M.%x...,_\ﬂﬂi\:.
Consequently rk(Y) > rk(.X), which contradicts the fact that there is an o_v.:.:::v_.._m:_
XY,

(iv) follows similarly. ]
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As a consequence of assertion (i) of the corollary, none of the hereditary algebras %<0,
bl 3<% and £>% can obtain as a full subcategory a path algebra given by a Uv::c:
quiver of type A3 with linear orientation. From this it follows that there exists a bound ¢
such that for t > ¢ each tilting complex on a hyperelliptic weighted projective line with ¢
weights is wild. In 9.4 we will determine this number ¢ precisely.

Proposition 9.2.2 Let (A, B,C,D) be a partial tilting sequence in Db(coh(X)) for a
weighted projective line of type (2,...,2). Then

hac-hgp=hap-hcp+hap-hsc.

Proof. Consider the matrix

tk(A) rk(B) tk(C) k(D)
deg(A) deg(B) deg(C) deg(D)
tk(A)  tk(B) rk(C)  rk(D)
deg(A) deg(B) deg(C) deg(D)

M=

By Laplace expansion with respect to the first two rows and application of the Riemann-
Roch formula we obtain

0 = hap-hep—hac-hep+hap-hsc+hpc-hap—hep-hac+hep- \fm

2(hag - hep — hac-hsp+hap-hsc),

which finishes the proof. o

9.3 Layered algebras

9.3.1 Let & = kQ/I be a finite dimensional k-algebra. For vertices ¢,j € Qo we denote
by hi; the k-dimension of Homg(P(i), P(j)), where P(i), P(j) are the corresponding
indecomposable projective L-modules.

Definition 9.3.1 The algebra ¥ is called a layered algebra if there is a surjective map
s:Qo = {1,...,n}, for some n € N, satisfying the following conditions:

(i) hi; &mvg&m only on (1) and s(j),

(i) hii =

(111) if h; mm 0 and i # j then s(i) < s(j),

(iv) if (i) < s(j) and h;; = 0 then s(i) =1 and s(j) =n,

(v) if s(i) < s(j) < s(1) < s(m) then hithjm = hijhim + himh;i.

9.3.2 Applying the results of the previous sections we have the following theorem

Theorem 9.3.2 Let ¥ be an algebra derived equivalent to a canonical algebra of type
(2,...,2). Then ¥ is a layered algebra. 0
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9.3.3 Identifying the category of modules over the ¢-subspace problem algebra Ay with
the right perpendicular category L* of a line bundle on a weighted projective line X of type
(2,..,2), t entries, a tilting complex in D*(mod(Ao)) can be considered as a connected
partial tilting complex in D*(coh(X)). Thus, again by 9.1, and 9.2, we have

Theorem 9.3.3 Let ¥ be an algebra derived equivalent to a t-subspace problem algebra.
Then ¥ is a layered algebra. o

9.3.4 Let E be an exceptional vector bundle on a weighted projective line of type
(2,...,2). We know that the right perpendicular category E* is equivalent to a category
of modules over a hereditary algebra H. Then H is also-a layered algebra. Indeed, since
the embedding E*+ < coh(X) is exact, the projective H-modules form a connected partial
tilting complex in D*(coh(X)) and the result follows again by 9.1, and 9.2.

In case E is a line bundle, H is known to be the t-subspace problem algebra. As an
example we determine here the hereditary algebra in the "next more complicated” case
of an omnipresent exceptional vector bundle of minimal rank.

Proposition 9.3.4 Let E be an omnipresent exceptional vector bundle of rank t — 1
on a hyperelliptic weighted projective line with t weights. Then the right perpendicular
category E* is equivalent to the category of modules over the path algebra for the following
quiver

lo

to
where for each i, 1 < i < t, the number of arrows from i to t + 1 equals t — 3.

Proof. Recall from Theorem 6.3.6 that, up to a line bundle shift, E is given as the middle
term of an exact sequence

0= O(=&) = E - ExtL(0(8), 0(-3)) ® O(&) - 0.

It follows that O(&;), for 1 < i < t, and O(¢+ &) belong to E*

We prove that the O(Z;) are projective and that O(¢ + &) is injective in E*. In
order to show this suppose that A € E*. Now, there is a 50:0305_12: oF;) — I
Application of Hom(—, A) yields an exact sequence Exty(E,A) = Exty(O(&;), A) — 0.
From Extl(E,A) = 0 it follows that Extl(O(&:),4) = 0, and Q:Zm::a::z o(7;) is
projectivein E*. Further, there is an epimorphism E — O(¢). Application of Homx(—, A)
yields an exact sequence 0 — Homyx(O(¢), A) — Homx(E, A) = 0. Invoking Serre duality
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we get 0 = Homy (O(7), A) = DExty(A, O(¢+d)). This proves that Extpi(—,0(¢+)) =
0, and consequently O(¢+ &) is injective in E*.

Since Homyx(O(Z;), O(C + &)) & DExty(0O(6),O(F;)) = 0, it is impossible that in £+
the module O(€ + @) is the injective envelope of the top of one of the O(Z;). Hence
O(Z + &) coincides with the injective indecomposable corresponding to the remaining
vertex of the quiver, and therefore the remaining indecomposable projectivein E* is of the
forin ._.m:miQAm..f 3)[~1]. Finally, Exty(O(€ + @), O(F;)) = DHom(O(Z;), O(¢ + 24)) =
DHom(O,O(%; + 24)) and &; + 26 = &, + (t — 4)¢. This shows that the dimension of
Exty(O(¢ + &), O(F:)) equals t — 3 which gives the number of arrows for the quiver. O

9.3.5 Let ¥ be a layered algebra with layer function s: Qo = {1,...,n}. Fori=1,..,n
we choose an indecomposable projective -module P; such that s(P;) = ¢. Further we
denote by v; the number of indecomposable projectives P with s(P) = ¢.

The layer triangle of ¥ is defined as

hin

hia hn-2,n
hy2 ha3 . = . hp_2,n-1 hn—1,n

Moreover, we define the Cartan triangle of ¥ as

hin

c(E) = ha hn-zn

hia - ha3 . . 2 hn-2,n-1 hn—1n

v vy e B 5 Un-1 Un

Note that the Cartan triangle contains the same information as the Cartan matrix of
DI

The property of being layered is preserved when passing from I to its opposite algebra
P, Moreover, if ¥’ is a full subcategory of ¥ then ¥’ is also layered, possible with a
smaller number of layers. In this case we call H(X) (resp. C(X°?)) the opposite layer
(resp. Cartan) triangle and H(X') (resp. C(¥')) a subtriangle of H(X) (resp. C(X)).

9.3.6 We will study layered m_wnv;m which are tame. In our investigation we will fre-
quently use a result of Dowbor and Skowroriski [28], which states that a locally bounded
category is tame if and only if its (finite) full subcategories are tame.

Proposition 9.3.6 Let © be a tame layered algebra. Then n < 5 and the layer triangle
H(X) or its dual is a subtriangle of one of the following

0 0

1 1 1 1 1 1 1 1
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1
2 1 2 2 A v
2 2 1) \2 2 ) VE 2

Proof. Since ¥ is tame all entries in H = H(X) are smaller than or equal to 2, because
otherwise ¥ contains as a full subcategory a wild algebra. Moreover, whenever h;;y; = 1
and hit1,i42 = 2 (resp. hijp1 = 2 and higy,i42 = 1) it follows that h;;1, # 2, by the same
argument. This gives in the case n = 3, up to duality, the following

o) o) (e m )y drs=oort (% 4), (6 7 ).

as possible layer triangles.

Suppose now that n = 4. Then there are three possibilities: hy3-haq =1, h13-hoqy =4
and hy3 - haq = 2. Applying condition (iv) and (v) of Definition 9.3.1 we conclude that
in the first and the second case the only possible triangles are

0 0

1 1 and 2 2 , respectively.
1 1 1 2 2 2

In the third case, up to duality, H is one of the following

Now assume that ¥ is a layered algebra with n > 5 layers. Forming layered algebras
by taking full convex subcategories of ¥ with 4 layers we infer that the triangles
hi 4 rn_u.

H' = hia ha4 5 H" = ha 4 has
hi2 ha,3 h3e ha,3 ha has

belong to the layer triangles we have classified before. Moreover, we have hyq4 # 0
and hys # 0. Thus, up to duality, H' = H and H” = (H)°®. TFrom the equation
hig-hys = hi2-has+hi5-haa we obtain hy 5 = 0. Therefore n = 5 and H(X) is the first

triangle of our list. Dually the case H” = H gives the second one. u]

Corollary 9.3.7 Let ¥ be a tame layered algebra. Then the Cartan triangle C(X) or its
dual is a subtriangle of one of the following
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0 0
1 1 1 1
2 1 2 2 1 2
1 1 1 1 ) 1 1 1 1 )
1 2 1 2 1 1 3 1 1 1
0 0 0
1 2 2 1 1 1
2 1 1 , 2 2 1 5 1 2 1 ,
1 1 4 1 1 1 1 4 4 1 1 4
0 o 1
1 1 2 2 2 2
1 1 1 § 2 2 2 [ P
- - - - - - = - - 2 - - = ;
2 2 2 2 1 1 1 1 ! !

Proof. Adapting to the layer triangles obtained in the proposition the possible sequences
v = (vy,...,0,) of numbers of objects in each layer, we obtain by tameness necessary
conditions for v. It is easily checked that for all other choices of v an algebra & with layer
triangle C'(X) contains a full subcategory which is wild. We illustrate this in two typical
cases, for the remaining ones the arguments are similar. 3
Suppose first that ¥ is a tame layered algebra with
0

C(T)= it

a b € d e

—

Then @ = ¢ = e = 1, because otherwise ¥ contains as a full subcategory a path algebra
of the quiver

W

o

or its dual. Moreover, we infer that b+ d < 4. Indeed, otherwise ¥ or £ contains as a
full subcategory a hereditary algebra given by the quiver

or a full subcategory which is a one-point extension of the dual of the 4-subspace problem
algebra A by an A-module M of dimension type

1
1
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Observe that in the second case M must contain an indecomposable projective direct
summand and consequently ¥ is wild.
By the same method we get in the case that ¥ is a tame layered algebra with

the necessary conditions a+b<4,a+c<4,b+c<4,b+d <4 and c+d <4. It follows
that C'(X) is a subtriangle of the second, the third or the ninth Cartan triangle listed in
the corollary. o

9.4 Tame algebras derived equivalent to hyperelliptic
algebras

Theorem 9.4.1 Let ¥ be a finite dimensional k-algebra. Then ¥ is tame and derived
equivalent to a canonical algebra of type (2,...,2) if and only if £ or ¥ belongs to the
following list.

List 9.4 Tame algebras derived equivalent to canonical algebras of type
(2,2,...,2), t entries

algebra t quiver relations layer triangle
Zi(r,8) 0,.,8° ° Pga — 0
Fp i by (v = Alv)a, =0 i i
. ﬁ? u by e by(u=2v)=0 1 2 1
. ° \
R VAN -
ag O.
° L]
. Ta(r,8) ' 0
' . -A i =0
0<rs<3 AN A V\ ¢ Me :»_w? 1 1
e =0
o \ / b ), (w 5 uv) . 1 ) 2 _ f _
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KMAMLV <y 6 o B " ° B b .
?hl., 1
< N TN
4(r,s) By ey il
Osmes? a as v ) \u b by
° Fn ° 7 3 e. °
mhm_: g1 TP v L AN
[E B
< .\\ /r.\\ /.
A A
Ee(r, ) 3,4,5 R

0<rs<1 \ A

e o0 ——> 0 .
a < Uy ]

v2
e/u)kﬂ

Lr(r,s) 345 . -
0<rs<1 \n‘/a’ \Q\\ é’
° o — o /> o

(u2v2 = Mujvi)a, =0

b, (uavy — Aujv) =0

ua; —yaz =0
uaz —yay =0
vay — Azwa; =0

vay — Aqwaz =0

bw—-bu=0
byw — byu =0
by — Asbyv =0
biy — Aebsv =10

yi(z1a1 — z2a2) =0
y2(z181 — Agz202) =0
(b2y2 —biyr)zr =0
(b2y2 — Asbry1)z2 = 0

u3vy — w2ty +ugvg =0
(uav2 — Muavy)a =0

b(uzvz — Asuyvy) =0

bsys — baya + biyy =0
(bays — Asbiyr)z = 0
vic=0
ya(za-¢c)=0

wza- Mto =0

1

Ta(r, ) 3,4,5 vor * o
psnest T AN
=2
[20 N 3
o 3, \- "
ay /-’
o ——Pp- 0o °
a2 7
z 3 .
10 ..\,\ /nh
.|='.. L]
' v/»’ Xn\
L]
Zn 3 a °
(o) .
Li 3 @\\.
1
.-Ilﬁ'.'».l'l”ﬂ'.
b3
L]
T o

bays — bayz + b1y =0
boyo — bayz + Asbiyr =0
yoar =0

yiaz =0

v2(a2 —a) =0

ya(a2 — 3245a1) =0

biay — baaz =0

biay — bzaz =0

ciby —c2by =0

cibja=0
cba =0
bia=0
ba, =0
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List 9.5 Tame algebras derived equivalent to {-subspace problem algebras

algebra t quiver relations layer triangle

In ::. list the ¥;(r, s) stand for families of algebras, where r and s denote the numbers
of vertices in the first and the last layer, respectively. These numbers can be chosen as it
is indicated. We have always drawn the quiver for which r and s are maximal, the other
algebras are obtained by deleting vertices and modifying the relations in the obvious way.

In the description of the relations the parameters are assumed to be pairwise distinct.
Moreover three of them can be chosen as 0, 1 and (formally) oo, this is already realized
for algebras of type ¥s - ¥s. Thus for t > 4 each ¥i(r, s) denotes a family of algebras
depending on t — 3 parameters. Observe that in case both r and s are nonzero the fact
that the parameters are pairwise distinct implies that all pathes from the first to the last
layer are zero.

The module category of an algebra with parameters as stated in the list is always
derived equivalent to coh(X) for a weighted projective line with parameters (A\; = 0o, Ay =
0,A3 = 1,...A;). Note that in the cases L;(r, s) and Xg(r,s) a rational fraction in one of
the parameters appears.

For the convenience of the reader we have included the corresponding layer triangles.

Ay(r,8) 0,508 *

° bya; =0 0
0<r,s<4 1 1

X/
<

Da(r, s) 1.7 °

b =0
0<rs<3 /h_’ \v\\ ,Wa; 1 1
1 1 1

The theorem will be proved in 9.6. We remark that the theorem gives an alternative
proof of the fact that for weighted projective lines of type (2,...,2), t entries, t > 4,
there are no tilting complexes with representation-finite endomorphism algebras (compare

i3 ¢ Bs(r,9) 2.6 bl s Bl 0
T'heorem 8.2.5). %m.‘ Mm &1 M . \S\ Ml.ﬂ ”_e ”& = ” i ,
Corollary 9.4.2 Let ¥ be a tame algebra derived equivalent to a canonical algebra of / S SIS ! ! !
. ° ay y o —g bywa, =0
type (2,...,2), t-entries. Then t < 8. 5 bagas = 0
4 L=
9.4.3 We recall from [42] that an algebra is called quasitilted if it is of the form A =
End(T'), where T is a tilting object in a locally finite hereditary abelian k-category. Equiv-
alently these algebras are characterized by the following two conditions:
(i) gl.dim A < 2. Adr, s) sas 0
(ii) If X is a finitely generated indecomposable A-module then either pd4; X < 1 or 0<rs<1 \\\ / biyr ~b2y2 = 0 1 1

ida X < 1. - - R biyr —bays =0 1 1 1

- L biyia =0
Corollary 9.4.3 Let ¥ be a tame algebra derived equivalent to a canonical algebra of / \
type (2,...,2). Then ¥ is quasitilted.
9.5 Tame algebras derived equivalent to subspace prob ol

A 4,5 ° bray — bra; =0 1
0 b
lem algebras sred N« DN biar — byaz = 0 (')
5 ; . s s .\ /- biay — bgay =0

Theorem 9.5.1 Let ¥ be a finite dimensional k-algebra. Then ¥ is tame and derived S~ o F
equivalent to a t-subspace problem algebra if and only if ¥ or £ belongs to the following E& ° \u;\

list.
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DciAﬁwvm <1 34,5 ¥.\ N bays — bay2 +biyr =0
- - / biyiaz =0
° o ——p o llwl'
az /SP \w\‘ bayzay =0
RN 3 yia =0
y2a2 =0
ya(az2 —a1) =0
Aq(r,3) 34,5 . (®
) 4, y2—biy)z=0
0<rs<1 ] ) b 2
<rs< .\1 /’. \\ / . ne=0
JA———
c y2(za—¢c) =0
N A
As 4 3 (w—uv)a=0
v u =
a \ / b bw=0
@ ———pp 8 P —P o
w
JAY 4 b by =0
o T bm=o
L] 'ﬂ' L] o
Y2 /@u’ (y1 —y2)a=0
Aro 4 .
v u wa; =0
\ /P . oy s

w

The theorem will be proved in 9.6.

Corollary 9.5.2 Let ¥ be a tame algebra derived equivalent to a t-subspace problem
algebra. Then t < 8.
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Corollary 9.5.3 Let £ be a tame algebra derived equivalent to a t-subspace problem
algebra. Then ¥ is quasitilted.

9.5.4 Using a result of Lenzing [73] describing the types of hereditary categories of "wild
hereditary type” we obtain a stronger version of the last corollary.

Corollary 9.5.4 Let ¥ be a tame algebra derived equivalent to a wild t-subspace problem
algebra. Then ¥ is a tilted algebra.

9.6 Proofs of the classification results

In this section we prove the statements of 9.4 and 9.5. We first recall some results of
Lenzing and Skowroriski concerning quasitilted algebras of canonical type [79]. Then in
9.6.2 and 9.6.3 we will find realizations of the algebras of list 9.4 and 9.5 as endomorphism
algebras of tilting complexes. Finally, applying the results of 9.3 and information about
Coxeter polynomials we will show that the endomorphism algebras of tilting complexes,
we are interested in, belong to our lists.

9.6.1 Let X be a weighted projective line of arbitrary weight type. An abelian k-category
H is said to be of canonical type if it derived equivalent to a category of coherent sheaves
coh(X).

Recall that the category of finite length sheaves cohg(X) decomposes into a coproduct
[Lrex Un where Uy denotes the uniserial category of finite length sheaves concentrated at
A. A cut in coh(X) is a pair (C',C") of extension closed subcategories of coh(X) such that
Hom(C”,C") = 0, and moreover each indecomposable object in coh(X) either belongs to C'
or to C". By [79, Proposition 2.2.] for each cut (C’,C") in coh(X), the additive closure M
of C"V C'[1] in D*(coh(X)) is a hereditary abelian k-category which is derived equivalent
to coh(X) and has a tilting object.

Conversely, for a hereditary abelian k-category H each equivalence of triangulated
categories D*(H) 5 Db(coh(X)) produces a cut (C',C”) in coh(X) such that H is equivalent
to the additive closure of C" Vv C'[1].

Let X'[[ X" be a decomposition of X into disjoint subsets, and write Cy = [Iyex'Un,
C! = [rex»Ur. Obviously, (add(vect(X) V Cf),Co) is a cut of coh(X), accordingly the
additive closure C(X',X") of C4[—1]V vect(X) V Cy in D*(coh(X)) is hereditary abelian with
a tilting object and is derived-equivalent to coh(X). Note that C(0,X) [resp. C(X,0)]
agrees with coh(X) [resp. (coh(X))’.

Let X be a weighted projective line of genus one. Recall that, for ¢ € QU {00}, C;
denotes the additive closure of indecomposable sheaves of slope ¢, ¢ € QU {o0}. For an
irrational number r let C"7) [resp. C"(") | be the additive closure of all Cy with ¢ <7 [resp.
r < ¢ < 0o]. Then the additive closure C(r) of C"" U C"*)[1] in D*(coh(X)) is hereditary
abelian with a tilting object and is derived equivalent to coh(X).

It is proved in [79, Proposition 2.3.] that each hereditary k-category H of canonical
type is equivalent to exactly one of the following

(a) mod(A), where A is a tame hereditary algebra,

(b) C(X',X") for some decomposition X' [[ X" of X,
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(¢) C(r), where r is an irrational number and X is of tubular weighted type.
We are interested in representation-infinite quasitilted algebras of canonical type.
They were characterized in [79, Theorem 3.4.] as follows

Theorem 9.6.1 The following assertions are equivalent for a k-algebra L.
(1) ¥ is representation-infinite and quasitilted of canonical type.
(it) ¥ is isomorphic to the endomorphism ring of a tilting object in a category C(X', X").
(iii) ¥ is a semiregular branch enlargement of a concealed-canonical algebra.
(iv) The category mod(X) admits a sincere separating family of semiregular standard
tubes. u]

Recall that a tube is called semiregular if it does not contain both a projective and
an injective object. Further a semiregular branch enlargement in the meaning of [79] is a
branch enlargement in the sense of 8.3.2, for which all extension and coextension branches
are truncated branches, and moreover, from a fixed tube either only extension branches
or only coextension branches are taken.

Specifying to weighted projective lines of type (2,...,2), t entries, we obtain the fol-
lowing description. Fix a decomposition X' [ X" of X and a tilting object

T=Ty-1® T ® T

in’H =C(X,X") with T, € vect(X) and Tp, Ty € cohg(X). Then Ty and T} are direct sums
+ 0 1o 0 0

of simple exceptional finite length sheaves. We assume that Ty or Ty is nonzero. Since T is

a tilting complex, we see that T, is in the perpendicular category (T¢ & 7 Tg)* which, by
2.4.2, is equivalent to a category of coherent sheaves coh(Y) for a a weighted projective
line Y of type (2,...,2), t' entries, with ¢’ < t. Thus T* is a tilting bundle on coh(Y)
and the endomorphism algebra ¥ = End(T') is a multi-point extension-coextension of the
concealed-canonical algebra £ = End(T}) (see 8.3.2). Now, under the assumptions that
X is hyperelliptic, that ¥ is tame and that both T§ and T are nonzero, it follows from
the results of 9.3.6 that Y is of domestic type.

Conversely, let T, be a tilting bundle on a weighted projective line of type (2, ...,2), t'
entries. Choose ordinary points A}, i = t'+1,...,¢'+rand X, j =t'4+r+1,..,t' + 7 +s.
Let X be the weighted projective line obtained from Y which attaches the weight 2 to the
points A, ..., AL, A% ..., A (note that we are identifying the sets underlying X and Y with
the projective line over k). Further, let X' [ X" be a decomposition of X such that each A}
belongs to X’ and that each A} belongs to X”. Then the complex Tg[—1] @ Ty @ Ty, where
Ty = mwwuﬂt Sip and Ty = w.wr.nﬁt S;1, is a tilting object in C(X',X"). Here Sip, Sia
are the simple finite length sheaves given by the exact sequences

00— 0(&) > Sip— 0,

0= 0(&) > 01©E) > Si1—0
(compare 2.2.5).
For a tilting object Tj[—1] & T} @ Ty in C(X',X") we write, as in 8.3.5,

% =End(T)-1]®T,;) and %, = End(Ty & TY).
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Then X;? and E, are almost concealed-canonical algebras. According to 8.3.5, the support
of each indecomposable ¥-module belongs to ¥; or else to L,, and therefore ¥ is tame if
and only if both ¥; and X, are tame. Now, applying Theorem 7.1.3, which states that
an almost concealed-canonical algebra realized on a wild weighted projective line'is wild
again, we obtain the following handy criterion for tameness.

Proposition 9.6.1 Let X be a weighted projective line of type (2,...,2), and let
T~ @ Ty @ Ty be a tilting object in C(X',X"). Then L is tame if and only if ¥, and ¥,
have less than T vertices. u]

9.6.2 In this subsection we provide realizations for the algebras ¥ of list 9.4 by tilting
complexes on weighted projective lines of type (2,...,2), t entries. We always give a tilting
complex for the algebras ¥;(r,s) with maximal r and s, the modifications for the other
cases are easily done.

For t > 4 all these tilting complexes are of the form Ty[—1] & T} & Ty with T} €
vect(X), Ty, Ty € cohg(X), and can be therefore regarded as tilting objects in a category
C(X',X"). Moreover, in this situation T} can be considered as a tilting bundle on a
weighted projective line of type (2,2,2), (2,2), (2) or else on P'. In the first case we
denote by F' the uniquely determined rank 2 vector bundle of slope w

For t < 3 the tilting complexes of list 9.6.2 can be regarded as tilting modules in
categories mod(A) for tame hereditary algebras A.

List 9.6.2 Realization of the algebras of list 9.4 as endomorphism algebras of
tilting complexes

T1(4,4) Si10[-1] Ss,1
S20(-1] / \ Sea
v o=t o® A
S30[-1] \ / ,.w:
.w._aﬁl: Ss,1
£2(3,3) S20[-1] O(%) \ S5
rwwoﬁ:v Q\ //QANV Ses
.m.__c—l__ / qu_
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T3(2,2)

T4(2,2)

Ts(1,1)

De(1,1)

(1,1)

S30(-1]

/ \ //o@\
o’ LN
Sa0[—1] — — O(H)) — S:

X XX

Sio[=1] = O(&) — &) — O(Z2) —> Se1

.w.bﬁ —_

/\

NN
Nt

O(1)

/N

Sio[-1]—/> O — 0O(>) )— O() — s

Now”

/NN

Sip[-1] ————— F — O(i;) —> S5,

N o

O(is)

Ts(1,1) O(f1)

P \ /
o A Sa2.1 vﬂ O(%) — #2 — 3)[1]
o \.w_;
O—s Q?auv/ vgm_ - 5)1]
S2.1
s \ea_ - £)(1]
O— 8, — O(%; - £, — &3)(1]
/»ea. - &)(1)
5, O(& - £2)[1]

/

O —— O(F) — T — £3)[1]] — O(F, - £5)[1]

N

O(F; — 5)[1]
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o o(z, - 72)[1]
/mz\ N

-z v\ /reﬂ

z
£ — T3)[1]

S
8

2

S
\ / o
o) O(# — £2)[1]
//rm:\

In each case one proves that the listed complexes are in fact tilting complexes having
the corresponding algebras as endomorphism algebras. In fact, the given complexes have
the correct numbers of indecomposable direct summands. Moreover, the fulfilment of
condition (i) of Definition 8.1.1 is a consequence of the formula determining the Hom-
dimension between line bundles, the Serre duality, the interaction between line bundles
and finite length sheaves (see the exact sequences in 9.6.1) and the fact that the rank-2
vector bundle F has a line bundle filtration (for instance given by an Auslander-Reiten
sequence). Recall that the Auslander-Reiten quiver of the sheaf category for a weighted
projective line of type (2,2,2) has a unique vector bundle component of the form

The tools mentioned above also allow to determine the quivers and relations for the
given complexes. We illustrate this in detail in two typical cases, the arguments in the
remaining ones are of the same type.

Also, it follows from 9.6.1 that all endomorphism algebras of the complexes listed here
are quasitilted and tame.

9.6.2.1 First, as a typical example for a tilting complex whose indecomposable direct
summands are only line bundles and finite length sheaves, we consider a realization for
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an algebra of type £j. Take the tilting complex
T = S30[~1] @ Sao[~1] ® O ® O(&1) ® O(F,) ® O(C) D Ss5,1 D Se1

on a weighted projective line X = X((2,2,2,2,2,2), (A1, Az, ..., X¢)). We can assume that
A = 00, A2 = 0 and A3 = 1. Our aim is to show that ¥ = End(T) is isomorphic to the
algebra ¥3(2,2) as described in 9.4. Obviously the quiver @ of ¥ has the shape

-
A A

We will give a presentation € : kQ/I 5 % such that I coincides with the ideal described
in the list. First define e(u1) = X, e(v1) = X1, €(u2) = Xz, €(vy) = X3, where the X;’s
denote the obvious multiplications O — O(Z;) and O(&;) = O(c), respectively.

For ¢ = 3,4 there are exact sequences

it 0— 024 O(F) — Sip — 0
which give rise to morphisms a; € Homp(S;p[—1],O). We define €(a;) = a3 and €(a;) =
ay. We further choose, for j = 5,6, nonzero morphisms §; € Homx(O(¢), S;,1) and define
€(b1) = Ps and €(b2) = fs.

Now, for j = 5,6, Homx(O,S;1) is one-dimensional. Consider the exact sequence
0—0-20@5s% —o0

where u = X2—X; X} and %NE__ is the sheaf of quasi-length 2 such that there is an irreducible
epimorphism v; : .www__ — 8j1. Up to a scalar we have B; = vjk;. Hence fu = 0, which
implies ;X% — X;8;X? = 0, and consequently bj(uv; — Aipquyv1) € I = kere, for [ = 1,2.

On the other hand, we have dimyExt)(Si0, O(¢)) = 1, for i = 3,4. Note that the
exact sequence u - 7;, obtained from 7; in the pushout diagram along the morphism v =
X2 — X\ X2, splits. Therefore 0 = u-a; = (X? — \; X?)e, which implies that the elements
(u2vy — Aiyouivy)a; belong to I for I = 1,2.

Observe, that the fact that the parameters are pairwise distinct implies that all b;uwva;
are in I.

9.6.2.2 Next we determine the endomorphism ring of the tilting complex
T =810~ 0 ®F ®O(Z)) & O(F2) B O(Z3) D Ss
on a weighted projective line X = X((2,2,2,2,2), (A1, A2, ..., As)). Again we assume that

Al =00,y =0and A3 =1.
The quiver Q of ¥ = End(T') is easily calculated, it is of the form
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NS

-

We shall choose representatives for the arrows in a special way in order to get a
presentation € : kQ /I 2 % such that I coincides with the ideal for £7(1,1) as described
in 9.4. For this we first fix a nonzero map 3. € Homx(O(¢),Ss,1) and define ¢(b;) to be

the compositions J3; : O(Z;) N O(e) £ Ssa, J = 1,2,3. Further we choose a nonzero
map ( € Homx (O, F). Using that Homx((, O(Z;)) : Homx(F, O(&;)) = Homx (O, O(;))
are isomorphisms, we see that there are §; € Homx(F, O(%;)) such that {;¢ = X;. We
define €(y;) = &;.

We have dimyHomy(F,Ss1) = 2 and dimgHomyx (O, Ss1) = 1. Applying the functor
Homx(—, O(€)) to the exact sequence

0 — O L5 F—3.0(F: + 2= T3) = 0,

the relation X2 — X2 — X? in Homx(O,O(¢)) gives a relation X33 — Xa6, — X1 in
Homy(F,O(c)). Composing with B. we see that B3fs — B2€s + f1€y = 0. Next, we
calculate an additional relation in Homx(O, Ss,1). To do this, we conclude similarly as in
9.6.2.1 that 0 = .%nﬁxfxum = \/wxwv Thus 0 = ann - \/um_.vﬂ— = \meun. — »wm~mﬁh.

We complete the definition of ¢ by choices of representatives for the arrows a and c at
the left hand side of the quiver. Let ¢(a) = a where a is the exact sequence i

0— 024 O(Fy) — S10 — 0.

Now, €(c) has to be chosen as a morphism v € Homp(S84,0[—1], F') which does not factorize
through O. We choose 7 as a morphism factorizing through O(#; — 3) using the pushout
diagram

v 0 —> O(F2—f3) —> O(F2— 13- 1T4) — S4o —> 0
Je h I
=07 0 — F — M — 840 — 0

where 7' € Exty(Ss0, O(Z2 — 73)) and (; € Homx(O(F; — 75), F) satisfy, additionally, the
conditions £,(; = X3 in Homx(O(; — 73), O(;)) and X37' = Xya in Exty (S0, O(32))-
Note that these choices are possible, because
Homy (O(Z; — #3),&2) : Homy (O(Z2 — @3), F') = Homx(O(£2 — £3), O(Z3)) and
Extk(S1.0, X3)) : ExtL(Sa0, O(F2 — 73)) = Exty(Ss0, O(F;)) are isomorphisms.

We obtain that y,c € I. Indeed, application of Homy(S4,0, —) to the exact sequence

0— OF, - T3) B F 5 0(7) — 0

gives &7 = &Gy = 0. Furthermore, ya(c — za) € I, because 0 = X37' — Xpa =
667" — &ola = &(y - (a).

In order to find a relation in Extk (84,0, O(%3)) consider the following (non-commutative)
diagram
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Saol-1] F 20 0@) =3 09
A
x
O(&: - &)

Similarly as in 9.6.2.1 there is a relation X?a = 0 in Ext}(Ss0,0(é)), hence X2a =
3, X3a. Invoking the relation X3 — X7 + X} = 0 we infer that XJa = wwﬂl_kwm. Now,
Xabsy = Xabs(1y' = X3X2y' = X2X37' = X2a, and therefore X3(£3Ca — wwm._.@i =
X3ésCa — WwHLmei = kwm - mGwb =0

Since Exty(Ss0,X3)) : Exty(Ss0,0(F3)) = Extl(Si0,O(&)) is an isomorphism, we
obtain &3(Ca — »wul.\é, and consequently y3(za — w.\ﬁ[_& el

Observe again that the fact that the parameters are pairwise distinct implies that all
pathes between the two extreme vertices belong to I.

9.6.3 In this subsection we will realize the algebras A;(r,s), for 1 <7 <7, of list 9.5 as
endomorphism algebras of tilting complexes for subspace problem algebras. Note that the
remaining algebras A;, 8 < i < 10, have 5 vertices and appear already in list 9.4. Thus
they can be realized by tilting complexes in the derived category of coherent sheaves over
a weighted projective line of type (2,2,2), which is equivalent to the derived category of
modules over the 4-subspace problem algebra.

For the relevant realizations we identify the category of modules over the t-subspace
problem algebra Ay with the left perpendicular category *O to the structure sheaf O,
formed in a sheaf category coh(X) for a weighted projective line of type (2, ...,2), t entries.
Under this identification a tilting complex in D*(mod(Ay)) is the same as a partial tilting
complex in D*(coh(X)) having t 4 1 indecomposable direct summands which are contained

in DY(L0).

List 9.6.3 Realization of the algebras of list 9.5 as endomorphism algebras of
tilting complexes

A4, Si1a[-1] Ss1
S2.a[-1] / \ Se,1

v O - 82— %3 — &) 2
Ssal-1] \ / St
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A2(3,3)

As3(2,2)

Ay(1,1)

As(1)

Ae(1,1)

— §y)— O(%) — T, — T3) — S6,1

O(%) — %2 — T4) —— S5

/\

O(%) — £2 — £3) ——> Se,1

Sy
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Ar(1,1) O(&) — £2 - Z4) O(F — ©4)

Saa[-1] F(=%4) Ss1

O(F2 = £4)

Using the same methods as in 9.6.2 it is easy to check that the given complexes
in fact satisfy the vanishing condition of Definition 8.1.1 and are contained in D*(+0).
Moreover, the complexes have the correct numbers of indecomposable direct summands.
Furthermore, changing if necessary the representatives for the arrows, their endomorphism
algebras are isomorphic to the corresponding algebras A;. Note that here parameters in
the relations do not occur.

Observe also that each of the algebra of list 9.5, except As(1), can be considered as a
full subcategory of an algebra of list 9.4. In particular, these algebras are tame, and by
[42, Chapter II, Proposition 1.15] quasitilted. On the other hand As(1), as a one-point
extension of a tame hereditary algebra by an indecomposable injective module, is tame
and quasitilted, too.

9.6.4 It remains to show that an arbitrary algebra derived equivalent to a hyperelliptic
or to a subspace problem algebra is isomorphic to an algebra of our lists. In order to
determine the quivers for such algebras we will use the following result.

Lemma 9.6.4 Let A be a finite dimensional k-algebra such that D*(mod(A)) is triangle-
equivalent to D*(H) for a hereditary category H. Let S,S5" be simple A-modules. Then
there exists at most one i > 0 such that Ext}(S,S") # 0. m]

The lemma was formulated in [39, Chapter IV, Lemma 1.11] in case H is a module
category for a finite dimensional hereditary k-algebra, the proof is easily modified to the
more general situation.

As a consequence the lemma implies that the quiver of A does not contain parallel
paths v, w such that v is zero but w is nonzero in A.

If, in particular, ¥ = End(T) is the endomorphism ring of a tilting complex in
D*(coh(X)) for some weighted projective line X of type (2, ...,2), or else in D*(mod(Ao))
for a subspace problem algebra Ag, and if moreover ¥ is tame, then the quiver of ¥ is
uniquely determined by the Cartan matrix of ¥. Indeed, we know that in this case the
Cartan triangle is one of the triangles characterized in Corollary 9.3.7. Now, applying the
lemma one easily proves that in each case there is only one possibility for the quiver.

Example. Let £ be tame and the endomorphism ring of a tilting complex in

D*(coh(X)) such that
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Then the quiver of ¥ is of the form

because no path of length 2 can be zero. o

9.6.5 In the converse of the proofs of our classification theorems an important role is
played by investigating Coxeter polynomials. For a finite dimensional algebra A with
Cartan matrix C'y the Cozeter matriz is defined as

0\» = !~Q> . QM_

where C4 denotes the transpose of the matrix C4. It is the matrix of the automorphism
o4 Ko(A) = Ko(A) given by the formula”pa([P(S)]) = —[I(S)] for each simple A-
module S. Here P(S) and I(S) denote the projective cover and the injective hull of S,
respectively. The map ¢4 is said to be the Cozeter transformation of A.

The characteristic polynomial ¥4 = det(T'E — ®,4) is called the Cozeter polynomial
of A. It follows from [37] that two algebras which are derived equivalent share the same
Coxeter polynomial. In [77] the Coxeter polynomials for canonical algebras and for path
algebras of stars are determined. In particular, for the algebras we are interested in we
have

Proposition 9.6.6 (i) If X is a weighted projective line of type (2,...,2), t entries, then
Wy=(T—-1)72(T+1)"
(i) If Ao is the t-subspace algebra, then
Vo= (T+D) (TP~ (t=2)T +1).
m}

9.6.7 Now we continue the proofs of Theorem 9.4.1 and Theorem 9.5.1. Assume that A

is a tame algebra which is derived equivalent to a canonical algebra of type (2,...,2)or
to a t-subspace problem algebra. We have to show that A or A°” is isomorphic to one of
the algebras of list 9.4 or list 9.5, respectively.

Since A is tame the Cartan triangle C(A) is one of the Cartan triangles described in
9.3.7. 1t follows from 9.1.4 and the explicit calculation of the Coxeter polynomials that
the Cartan triangle of A coincides with one of the Cartan triangles of an algebra of list
9.4 or list 9.5. Moreover, according to 9.6.4, the quiver Q of A is determined uniquely by
its Cartan triangle.

Finally we have to determine the relations for A. First, in case A is derived equivalent
to a subspace problem algebra, it is easily checked that for some choice of the represen-

tatives for the arrows the ideal I coincides with the ideal of the corresponding algebra of
list 9.5.
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The same can be done if A is derived equivalent to a domestic or tubular canonical
algebra of type (2,...,2) (observe that in the later case A depends on one parameter \).

Now, let A be derived equivalent to a hyperelliptic algebra. We know that there is an
algebra X of list 9.4 such that the Cartan triangles and the quivers of A and ¥ coincide.
According to [75], the rank function rk : Ko(X) — Z is, up to sign, uniquely determined.
From this and from the realization of ¥ we deduce that A is the endomorphism ring of a
tilting complex of the form T = T{[-1]® Ty @ Ty with Ty, Ty’ € cohg(X) and T € vect(X).
Then Ty is in (Ty @ ¢ Ty)*, which is equivalent to a sheaf category coh(Y), where Y is a
weighted projective line of type (2,2,2), (2,2), (2) or Y = P!. Therefore T is either, up
to a line bundle shift, the canonical tilting sheaf for Y of type (2,2,2), or it is given by a
complete slice in the unique component of vector bundles of coh(Y). Again, by means of
a line bundle shift, we can assume that this slice is the same as for the tilting bundle in
the realization for . Obviously, Tj and T} are direct sums of simple finite length sheaves
on X. Hence the endomorphism ring A of T' can be calculated by the method described in
9.6.2 and it turns out that A is isomorphic to an algebra ¥;(r, s) for suitable parameters.

Let us illustrate the method in two typical examples.

(a) Let A be a tame algebra derived equivalent to a canonical algebra of type (2, ...,2) or
0

to a subspace problem algebra such that H(A) = 3 ! i ! 7 ;

. 1 1 1 1
According to 9.3.7 we have the conditions e = ¢ = e = 1 and b+d < 4 for the sequence

of the numbers of the vertices v = (a,b,¢,d,e). Suppose that b = d = 1. Then the Coxeter
polynomial for an algebra having this Cartan triangle equals (T2 — 4T + 1)(T'+ 1)®, which
is neither a Coxeter polynomial of a canonical algebra of type (2,...,2), nor of a subspace
problem algebra. Hence this case is impossible. For b = 1, d = 2 we obtain the algebra
Az7(1,1) of list 9.5 and the choices b =1, ¢ =3 and b = 2, d = 2 lead to the algebras of
type £7(1,1) and 5(1,1) of list 9.4, respectively.
(b) Let A be a tame algebra derived equivalent to a canonical algebra of type (2, ...,2) or
0
1 1

1 2 1
1 1 1 1

Here v = (a,1,¢,1,e) witha+c<4andc+e <4 Forc=3a=1=¢ weget
algebras of type Lg(1, 1) and for ¢ = 2, ¢ = 1 we obtain algebras of type ¥3(r,s), ¥a(r, s),
respectively.

In the same way one proceeds for the other layer triangles, which completes the
proofs. =]

to a subspace problem algebra such that H(A) =
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