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Abstract

This is Part II of a series of papers on the disturbance decoupling problem for linear
constant coefficient descriptor systems. In Part I, [6], necessary and sufficient condi-
tions were determined that guarantee the existence of proportional state feedbacks or
proportional derivative feedbacks such that the resulting closed loop system is regular,
if possible of index less than or equal to one and the disturbances do not influence the
input-output behaviour of the system. In this paper we extend these results to the case
that we also require that the closed loop system is stable. All results are proved based
on condensed forms that can be computed using orthogonal matrix transformations, i.e.,
transformations that can be implemented as numerically backwards stable algorithms.

Keywords: Descriptor system, stability, disturbance decoupling, orthogonal matrix
transformation.
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1 Introduction

In this second part of a series of papers we study the following disturbance decoupling problem.
We consider linear descriptor systems of the form

Ei(t) = Az(t)+ Bu(t) + Gq(t); z(0-) =20, t > 0
y(t) = Caz(t), (1)

where E, A € R™", B € R™*™, G € R™*¢ C € RP*", For such systems we give necessary
and sufficient conditions such that there exist feedback matrices F, K € R™*" and H € R™*4
such that the closed loop system

(E+ BK)&(t) = (A+ BF)z(t)+ (G + BH)q(t)
y(t) = Ca(). (2)
obtained with the feedback
u(t) = Fz(t) — K&(t) + Hq(t) (3)

has the following properties:
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1. The matrix pair (E + BK, A+ BF) is regular, i.e., det(s(E + BK) — (A + BF)) # 0;

2. The matrix pair (E + BK, A+ BF) is stable, i.e., all the finite generalized eigenvalues
of s(E+ BK) — (A+ BF) are in the open left half plane;

3. In the transfer function of (2) the disturbance ¢(t) does not influence the input-output
behaviour of the system, i.e., C(s(E + BK) -~ (A+ BF))"'(G + BH) = 0;

4. In addition, if possible, the index of s(F+ BK) — (A + BF) is less than or equal to one.

Furthermore the methods that we derive allow to check the necessary and sufficient con-
ditions and to compute the desired feedbacks via numerical methods that are backwards
stable.

Variations of this problem with fewer requirements have been studied in [1, 3, 11, 10].
For a motivation of these requirements, see Part I of this series, [6], where we have studied
this problem without the stability requirement and without the possibility of a measurable
disturbance in the feedback. The extra requirement of stability is obviously important in
many applications, see e.g. [12].

We use the following notation, for more details see [6].

e Soo(M) denotes a matrix with orthogonal columns spanning the right nullspace of a
matrix M;

Too(M) denotes a matrix with orthogonal columns spanning the right nullspace of a
matrix M7T;

e M? denotes the orthogonal complement of the space spanned by the columns of M;

deg(f(s)) denotes the degree of the polynomial f(s);

rank, [-](s) denotes the generic rank of a rational matrix function.

All our results are based on a condensed form under orthogonal matrix transformations
which can be computed via a numerically backwards stable algorithm. This condensed form
is a variation of the the generalized upper triangular (GUPTRI) form, see [7, 8].

Lemma 1 Given a matriz pencil (E,A), E,A € R there exist orthogonal matrices P €
R, Q € R™*" such that (PTEQ, PTAQ) are in the following generalized upper triangular
form:

ny ng n3 N4
li |sEnn—An sEyp—Ayp sEiz— Az sEywg — Aug
T _m 0 $E2; — Az sEj3 — Az sEayq— Ay
P (SE - A)Q - n3 0 0 SE33 - A33 SE34 - A34 ! (4)
Iy 0 0 0 sFE44 — Aya

where sE')1 — Ay and sE44— Ayq contain all left and right singular Kronecker blocks of sE— A,
respectively, sFyy — Age and sF33 — Asz are upper triangular and regular, and contain the
finite and infinite structure of sE — A, respectively.



A backwards stable method for the computation of this form has been implemented in LA-
PACK (2]. It is easy to see that for all s € C the matrices Ey; and sE;; — A;; are of full

row rank and $E33 ~ Ass sE3q = Asy is of full column rank. Based on the generalized
0 sEqq — Agq

upper triangular form (4), we introduce the following spaces.

Definition 2 [7] Given a matriz pencil (E, A), E, A € R*™ and orthogonal matrices P,(,
such that PT(sE — A)Q is of the form (4). Then

1. The minimal left reducing subspace V,,_i[E, A] of (E, A) is the space spanned by the
leading ly columns of P;

2. The minimal right reducing subspace V,,_.[E, A] of (E, A) is the space spanned by the
leading ny columns of Q;

3. The left reducing subspace corresponding to the finite spectrum of (E, A), Vy_|[E, A] is
the space spanned by the leading I, + ny columns of P;

4. The right reducing subspace corresponding to the finite spectrum of (E, A), Vi_,[E, A)
is the space spanned by the leading ny + ny columns of Q.

From Lemma 1 we obtain that there exist orthogonal matrices Z; and Z; such that

range(Zi(sEn — An1)) = range(VI_|[E, A](sE - A)Vp_,[E, A)),
sEj — Ay 8By — Apg

range(Z; 0 By — Agy

) = range(V/_|[E, Al(sE — A)V;_,[E, A)).

The problem of constructing feedbacks such that the closed loop system is regular, of index
at most one and stable has already been studied in detail in the literature, see e.g., [4, 12].
We summarize the relevant results in the following Lemma:

Lemma 3 Let F, A € R**" and B € R**™,

a) There ezists a matriz F € R™ " such that (E, A+ BF) is reqular and stable if and
only if
rank[sE—A B]:n, Vs e Ct, (5)

b) There ezists a matriz F € R™*" such that (E, A+ BF) is regular, stable and of indez
at most one if and only if condition (5) holds and furthermore

rank[ E AS.(F) B ] =n. (6)
c) There ezist matrices F,G € R™*" such that (E'+ BG, A+ BF) is regular and stable if
and only if condition (5) holds.

d) There erist matrices F,G € R™*" such that (E + BG, A + BF) is regular, stable and
of indezx at most one if and only if condition (5) holds and furthermore

rank (T9([ B B |) A S(T5(B)E)) =n —rank | E B J- (7)



The following Lemma that we apply frequently is a direct consequence of Lemma 3.

Lemma 4 Given matrices of the forms
t t r
11 El 11 A] ll Bl
F := = =
12 [ 0 ], A 12 [A2 ! B 12 BZ
with I} <t and By full row rank.

a) If
SE1 - A] B]

rank[ — A, B,

J=11+12, Vs € Ct, (8)

then there ezist a nonsingular matriz Z € R**! and a matriz F € R™* such that

L t—1
_ _ 11 S@] - q)l —‘1)2
(sE—-(A+ BF))Z = I, [ 0 0 ] (9)
with (01, ®1) regular and stable.
b) If (8) holds and furthermore
Ey A1Sw(E1) By |
[ 0 ASw(Ey) By | =0th (10)

then there exist an nonsingular matriz W € R'*! and a matriz F € R™ such that
(sE — (A+ BF))W has partitioning (9) with (1, ®1) regular, of index at most one and
stable.

Proof. Let Z € R""_and Q € R™" be orthogonal matrices such that

11 t— ll 12 r— 12
5 I |50 — A —Ay B, li |Bu Bj
- A)Z = , = .
(sB ) Iy [ —An —Azz] [ B, ]Q Iy [321 0

Then By, is nonsingular because B, is full row rank. Moreover, conditions (8) and (10) are
equivalent to
[ 891 - An A12 Bll B12

=l +1,, VsecCH
—-An Az By 0 ] 1412 s €

and
O1 An1Sw(01) A2 By Biye

rank[ 0 A215,6(01) A2 By 0 ]=ll+l2'

respectively. Hence, if conditions (8), (10) hold, then by Lemma 3, there exist X and Fy,
such that
(©1,(A11 — BuByi'Az) + (A1 — B B3 A) X + Bi2Fy)



is regular, stable and of index at most one. Thus

and

r=q|

0

give the desired properties.

In the next section we introduce a condensed form which is a variation of of the generalized
upper triangular form and which allows to determine necessary and sufficient conditions for
the solution of the disturbance decoupling problem with stability, regularity and the index

requirement.

Z=2

2 A Condensed Form

Fy

5]

—Bj'Ay —BjlAg, } 5T

0

In this section we introduce a condensed form under orthogonal equivalence transformations
and determine different left and right reducing subspaces that are needed for the solution of
the disturbance decoupling problem.

Theorem 5 Given a system of the form (1), there exist orthogonal matrices U,V € R™*"

such that

UT(sE - A)V

UTB

cv

where Eyy, Hy, B3 and Es3 are of full row rank, E4,

seC

ny
FSEH - An
_A21
'_A31
0
0
| 0
[ B
0
B3 T
0| Uu'G
0
L 0

ny N2 n3

n2
sEj3 — Ay
sk — Ay
sE3; — Asp
sEg; — Ay
0
0
y [Gh]
’Flg G2
itz | Ga
ng 0
5 0
ng 0 |

n4

[0 0 Cs 04],

rank (sEgq — Agq) =

rank [

sEs3 — Ass
Cs

|

n3
sEyz3 — Az
sE33 — A3
sE33 — Aa3
sE43 — Agz
sEs3 — Asaz
0

ng,

ns,

N4
sEyq— A4
sEyq4 — Agq
sE34 — Azq
SsE4q4 — Ay
SE5q — Asyq
sEeq — A4 |

(11)

is nonsingular, and furthermore for all



sk - An By Gy
rank —An 0 G, = Ny + g + 7a.
— Az By Gj

Proof. The proof is given constructively via the following Algorithm. In this procedure we
need row compressions, column compressions and simultaneous row and column compressions.
These compressions can be obtained in the usual way via rank revealing QR-decompositions or
singular value decompositions, see [2, 9]. For convenience of notation we use in the description
of the algorithm the same notation for different submatrices in different steps.

Algorithm 1
Input: E,A € R**" B € R"™*™ G ¢ R"*? and C € RP*",
Output: Orthogonal matrices U,V € R™*" and the condensed form (11).

1: Perform row compressions in B,G and a column compression in C' such that

B, G
UT'B=:| B, |, UTG =:| o CVi=:[0 Ci |
0 0

with Gy, By of full row rank and C, of full column rank. Set

011 — ®y1 sO14 — By
UIT(SE' - A)Vl = 8921 - @21 8924 - @24
8031 — P31 5034 — B3y

2: Compute the generalized upper triangular form of (O3, ®3;):

§031 — @3; 503 — D3y 5033 — Pg,
Ul (503, — ®31)V,; =: 0 8042 — B4y 5O43 — Py
0 0 8953 - @53

Then for all s € C, ©4, is nonsingular, O3 and sO53 — ®s3 have full row rank, and
5031 — @31 has full column rank. Set

s011 — P14 Ve = ( §011 — @11 012 — By O35 — Dy3
$09 —®y | 2 T | 021 — @21 8025 — Dy 5Oy3 — By3 |’
[ 5034 — @34
Uy (5934 — B34) =: | 5044 — Dy
| 5054 — P54

3: Perform row compressions

On En B, B, e Gh

Ug (‘)21 = 0 y U:;T Bz =: 0 y Ug 0 = G2

O3, 0 0 B, | 0 Gs
1, ( An
with Eyy, Gy and B3 of full row rank and set U3T ®y | = | Ay
D3 | Aa



4: Compute the generalized upper triangular form of ([ BOs3 Osy ] , [ ®s53 D5y ])

Ui [ 8053 — P53 5054 — P54 ] V= [ $Es3 ~ As3  sEsq — Asg }

0 sEgq — Agq

with Es3 full row rank and sEgq — Agy4 Jull column rank for all s € C. Set

sEip ~ Apg | [ 5615 — &2

sEj; — Ag = UJ | 023 — &gy |,

sE3y — Ay | | $03; — @37
sE13— A1z sEyjq— Ay | [ 5613 — 15 014 — Py
sE93 — Az sEj4 — Aoy = UJ | 5093 — B3 5634 — By Va
sE33 — A3z sE3q ~ Aag | | 8633 — P33 5034 — B3y

[C3 C4] = [0 C4]V4,
Ey = B4, Agy:= 0y,

e [ e
|

Using this condensed form we can characterize the following spaces which are needed for
the solution of the disturbance decoupling problem. In the following we always identify a
matrix and the space spanned by its columns. Set

0

W o= T(,o([f)3 g]), A,::Vm_,[WT[g],WT[é]],

B r|.E [ A R I 0
Al = Vio[W [0],W [C]],A,._[W w | 0 Al
and
E A
Ay = A,T[O]A,, A2:=A3'[C]A,,
B G
Az = A{[O], A4;=A{[O]. (12)

Introduce furthermore the following indices

p = rankA,,

E 00 A

T = rank(Vm_,[[ 0 0 0],[0
G

0



ncri £ 2 3] [48 6]

v o= rank[ B G ] + rank(A;) (13)
(14)
We then get the following immediate corollaries of Theorem 5.

Corollary 6 Let E, A, B,C and G be in the condensed form (11). Then

n = ng,
T = m + 7y,
v = ny+nig+ .

Furthermore we directly obtain the spaces defined in (12).

Corollary 7 Let E,A,B,C and G be in the condensed form (11). Then there erxists an
orthogonal matriz Z € R"*Y such that

sk - An

range(Z —-An ) = range(sA; — Ay),
—Asz

[ B,

range(Z | 0 [) = range(As),

| S—

range(Z | G2 |) = range(A4).

In this section we have introduced a condensed form and several spaces that we will use
in the next section to derive necessary and sufficent conditions for the existence of solutions
to the disturbance decoupling problem.

3 Solution of the disturbance decoupling problem

We now discuss the solution of different versions of the disturbance decoupling problem.

Theorem 8 Given a system of the form (1). There ezist feedback matrices F € R™*" and
H € R™ % such that (E, A+ BF) is regular, stable and

C(sE-(A+ BF))"™(G+BH) =0 (15)
if and only if the following conditions hold:
rank [ sE - A B| = n, VsecH, (16)
rank[ sA1 — A Aj ] = v, VseCH, (17)
T < op (18)

Here the spaces Ay, Ay, As are as in (12) and the indices 7, p and v are as in (13).

8



Proof. Let U,V € R"*" be orthogonal matrices such that UT(sE - A)V, UTB,cv,UTG

are in the form (11). In this form condition (17) translates to

sEny—An By
rank —-An 0 | =n1+0+03 VseCt
—Az Bs

and condition (18) translates to fi; + iy < ny.

Necessity: Let F' € R™*" and H € R™*? be such that (E, A + BF) is regular and
stable and (15) is satisfied. Condition (16) follows directly from Lemma 3a). If we partition

ny nz ng ny
FV=[RA K B F

then we have that

sE~(A+BF) G+ BH
C 0

= nm+n2+n3+ny

n = rankg[

sEyy - (An+ BFR) G+ BiH
= mngz+ n3+ny4 4 rank, —Ay G
—(As1 + B3 Fy) G3+ BsH

Hence
sEn - (An+ BiR) H;+ BiK
rank, —Ay H, =
—(As1 + B3 Fy) H3 4+ BsK

which implies condition (18) since

fiy + fiy = rank,

sEn — (An+ BiF) G1+ BiH <
s m.
—An G2

To show (17) let P, be an orthogonal matrix such that

G+ B1H ~
e
G3+ B3H 2

with Gy of full row rank. Set

_A2l

—(Aa1 + B3 Fy)

- ~ Fi1—-(A B, F;
b [sBu—Au) _ pr sEn — (An + B1 )
ty [sEy —Ayn | 1!

and compute the generalized upper triangular form of (Egl, /121)
r1 ra

to [5921 — @3 503 — Py

PIT(SE~‘21 -~ A'.’l)Ql = ts 0 $03; — P3,

9

(19)

(20)

(22)



with O of full row rank and sO3; — ®3; of full column rank for all s € C. Set

™ ra
[8911 - P 052 - ‘1’12] = (sEn - An)Qa,
ty | ¥, I B,
ty | Uy | = [ T } Pl o (23)
l3 ‘1’3 ! B3
Since
$O11 — P11 O -y, ¥, Gy sEn—An By Gy
rank 8921 - (1)21 5‘622 - @22 \112 0 = rank —A21 0 G2
0 8932 -~ @32 \1’3 0 _A31 BS G3
ny + g + nig
Lh+t+1t3

for all s € C, it follows that rank [ §03; — B3y V5 ] = t3 for all s € C. By (19) we also
have that
t1+1t2+ r2 =) +ranky(sOg — ®2y) +rp = ny =r1+r,

or equivalently we have that

s0; — ¢y
5071 — &gy

We know that (E, A+ BF) is regular and stable, so we have that

([ On ] , [ P11 ]) is regular and stable.

ty + 13 =ry and [ ] is square. (24)

O2; @1
Therefore, we have for all s € C* that
sk - An B [ sEn - (An+ BiFR) B
rank —Ayn 0 = rank —Ay 0
—As Bs | —(An1 + B3F) Bs

011 — @11 5012 - By, ¥,
= rank 8921 - @21 3922 - (I>22 \I’Z
| 0 033 — ®3; Y3
= t; + 13+ rank [ 8O3, — B3, U4 ]

= titta+ts

= ny+ iy + g

which gives condition (17). i
Sufficiency: By conditions (17) and (18), using Lemma 4a), there exists [; € R™Xm
and a nonsingular matrix Z such that in

ny+ a2 ny— (7 + 7ig)

sEn — (A + B Fy) ny | sOn — ¢y P2
-An Z = ny | $O9 — ¥y —Pg9
—(As1 + B3Fy) n3 0 0



the subpencil ([ 811 ] ) [ gll ]) is regular and stable. From condition (16) we obtain that
21 21

sE3; — A3y sE33— Asz sE3qg— Asqy Bs
$Ey — A4y SEy3—Agz sEjq— Ay 0 | _
rank 0 sEs3— Asas sEsa—Asq 0 | "7 (A1 + 72),
0 0 SE64 - A64 0

for all s € C*. Thus, by Lemma 3a), there exists a matrix of the form

np— (1 +73) ng ng ng

j2) F F F4]
such that
0 Ez; E3zz Ezy B3Py As;+ BaFy, Ass+ BsFs Asy + B3 Fy
( 0 Eyu Fy3 Ey 0 Asg Asa Ayq )
0 0 E53 E54 ! 0 0 A53 A54
0 0 0 FEgq4 0 0 0 Agq

is also regular and stable. With
R=F+{o0 Bz F=[R R F Fy |v7, (25)

H computed from G3 + B3H = 0 it is easy to check that (E, A + BF) is regular, stable and
(15) holds. O

In Theorem 8 we have only used proportional state feedback and feedthrough. If we also
include derivative feedback, then we can weaken (18).

Theorem 9 Given a system of the form (1). There ezxist feedback matrices F, K € R™*"
and H € R™*¢ such that (E + BK, A+ BF) is regular and stable and

C(s(E+ BK) — (A+ BF))™'(G+ BH) =0 (26)
if and only if conditions (16) and (17) hold and furthermore

<n. (27)

ik [Tg;(B)(sE-A) Tg(B)G]
9 C 0

Proof. Let U,V € R™" be orthogonal matrices such that UT(sE — A)V,UTB,CV,UTG
are in the form (11).

Necessity: Let F, K € R™*" and H € R™*? be such that (E + BK, A+ BF) is regular
and stable and (26) holds. Partition

ny Ny N3 N4 n ng ns N4
FV =: [F1 F, F F4], KV =: [Kl Ky K 1(4].

Then (16) and (27) follow directly from Lemma 3c) and the inequality

T _ T -
rankg[Tw(B)(CSE A) TOO(OB)G]Srankg[sE (,é+BF) G+OBH]=n

11



To prove (17), let P, be an orthogonal matrix such that in

ty [sEy — An | [ s(En + BiKi1) - An
t2 ~An = PIT —-An )
t3 —A31 ] i 3(B3I(1) - A31
t, [ B ] [ B, t C:;'l ] Gy
ty p = PIT 0 y 193 G:g = PlT Gg y
ts B3_ | B3 ts G3_ G3
E\1, G and Bj have full row rank. If we set P := A I € R"*" then we obtain that

PTUT(s(E+ BK) - A)V, PTUTB, PTUTG, CV arein the condensed form (11). Since there
exist F € R™*" and K € R™*? such that (E+ BK, A+ BF) is regular stable and (26) holds,
it follows from Theorem 8 that

sk — Au By sEn - An B
rank —Aq 0 = rank —Agq 0
- Az Bs - Az B,

= thi+ta+i3

fiy + 7y + Az -
for all s € C*, which is condition (17).

Sufficiency: Since E1y, G; and Bj are of full row rank, there exists an orthogonal matrix
P, € R¥*¥ such that

sk — An sEwna— Ay sEya— Az sEyyw— Ay By Gy
P -An SE3 — Az sEj3— Aas sEy— Ay 0 G
— Az sE3; — A3y sE33 — Asz sEs3y— Asqy Bs G3

m ng ng ng4 m d
ty | sEn—An sEipa— Ay sEizs— Az sEyw—-A4,4 0 Gy
= 7 An sEyp — Azy sEyz— Asz sEyu— Ay 0 G

ts |sEs1 — Az sEsp — Asy sEaz— A3z sEag— Ay By Gs

with Ey;, G2 and Bj full row rank. Then condition (27) is equivalent to t; + 7y < ny.
Moreover, if we determine K such that K := [ K; 0O ] VT and E3 + B3k, = 0, then by

conditions (16) and (17) we have that rank [ s(E+BK)-A B ] =n for all s € C* and

sEqn —An 0 sEy - An By
rank —Ag 0 = rank —Ag 0
—A31 Bg _'A31 B3

= mtny+az=t +t,+13

for all s € C*. Then Theorem 8 gives the conclusion. [
While in the previous two theorems we have not made any index requirement, we now
discuss the case that the index of the closed-loop system is required to be at most one.

12



Theorem 10 Given a system of the Jorm (1). There ezist matrices F € R™*" and H €
R™*4 such that (E, A+ BF) is regular, of indez at most one, stable, and (15) holds if and
only if the five conditions (6), (16), (17), (18) and

rank [ Ay AzSuo(A1) As | = (28)

hold. Here the spaces Ay, Ay, A3 are as in (12) and the indices T, p and v are as in (13).

Proof. Let U,V € R™ " be orthogonal matrices such that UT(sE — AV, UTB,cv,UTG
are in the condensed form (11). Then condition (28) translates to

Ein AnSo(En) By
rank 0 A2ISoo(E11) 0 = ’fl] + fl'_) + ‘fl3.
0 A35-(FEn) Bs

Necessity: Conditions (6), (16), (17) and (18) follow directly from Theorem 8 and Lemma,
3a), respectively. So we only need to prove condition (28).

Suppose that F' € R™*™ and H € R™*? are such that (E, A + BF) is regular, of index
at most one, stable, and (15) holds. Let matrices Py, P, Q:1, G, 0, ®;;, Vi, i =1,2,3,
j = 1,2, and integers t1,¢3,3 and ry, ry be defined by (21)-(23). Then (24) holds and
moreover, Fy;, G and Bj are of full row rank, so that [ O3, W3 | is also of full row rank.

On , P11 ) is
O @2

also regular and of index at most one. Using one of the characterizations for systems of index
at most one, see [4], we obtain equivalently that

Since (E, A+ BF) is regular and of index at most one, we have that (

(_)11 (I)HS

621 q)21‘§

rank [ .

}:t1+t2 withS:Soo([ 11 ]).

Therefore, we have

nt+ayt+az = ttizt+ts

Eny AnSw(En) By
rank 0 AnSo(En) 0
| 0 A3 S(FEn) Bs

[ En (An + B1F1)So(En) By
= rank 0 AZISoo(Ell) 0
0 (A314+ B3Fy)Sw(E1) Bs
O 612 15 Y

= rank 921 622 ‘I)QS \IJ3

0 O3 &35 WU,

O Oy ‘1>115:' v,

> rank | Oy O PSS ¥,

i 0 O3, 0 L/

= b+t + 13,

v

13



where

‘?1 D Py : 011 65,
Py | =] P P2 |, S=S5(| On O |).
&, 0 &3 0 O3

Hence, (28) follows.

Sufficiency: Since conditions (16) and (6) hold, by Lemma 3a) there exists a F® ¢ R™*"
with partitioning

ny nz N3 ny4

PV (R R R K]

such that (E, A+ BF?) is regular and of index at most one. Hence, from the regularity of
(E, A+ BF®) we have
rankg(sE64 - A64) = ﬁﬁ.

But we know that sFgq — Agg4 is full of column rank for all s € C. Thus we obtain
rank(sE64 - A64) = ’I~l6 = n4, (29)

for all s € C. Using another characterization of index one systems, see Lemma 3 in [6], and
(29) we also have

rank(E) = deg(det(UT(sE — (A + BF°)V))

Eyn Ey Eygs
0 FEy» FEgx
S rank 0 E32 E33
0 Fy Fg
0 0 Ess
However, it is obvious to see that
Eyn Enp FEis
0 Eyp FExp
rank(E) > rank | 0 FEs3; FEs3 | 4 rank(Eg,).
0 Fy Ess
0 0 Es
Note that Fy is full row rank, therefore, we have Fg4 = 0 and
E2; Ey;
_ E3; Es3
rank(E) = rank(Fy;) + rank (30)
Ey Eg
This implies that
ﬁﬁ = N4, det(A64) 7/: 0. (31)

Hence, by condition (18), we have that n; + n3 < #i3 + ny + 15 and therefore, as in Theorem
2.4 of [5], we can compute a matrix X € R™*"2 gych that

Fy, FE
Es+ XEn Exp+ XEnx e B
rank E4, E43 = rank 32 733
0 E Ey Eg
53 0 Es
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As a consequence, we obtain

E3z+ XFEy Esz+ XEy
rank(E) = I‘a.l’lk(En) + rank E42 E43 . (32)
0 Es3

Since conditions (17), (18) and (28) hold, by Lemma 4b), there exist F; € R™*™ and a
nonsingular matrix Z such that

ny+ 02 ny - (g + 7g)

ny | $O11 — P11 -0y
g 0 0

sEy — (Au + B Fy)
—An Z=
—(A31 + X A2 + B3 Fy)

with ([ g” ] , [ i“ ]) regular, of index at most one and stable. By condition (16), we
21 21

obtain for all s € Ct

3E32 - /132 SEas - /133 SE34 - /i34 Bs

$Ey2 — Ayy sEq3— Agz sEqq— Ay 0 | _
rank 0 sEs3— As3 sEsq—Ass 0 | " (R + fa),
0 0 SE64 - A64 0

where

Es; = Es+ XEp, Azz = Agz + X Ay,
Ess = Ess+ XEy, Az = Asz+ XAgs,
E3y = E3s+ XFEyy, Aazg = Aszqg + X Ayy.

We also have that Bs, Es3 are full row rank, E4; and Agq are nonsingular and Fg4 = 0.
Moreover, condition (32) obviously says that

E3;+ XEy; Eszs+ XEgs Es2+ XEy FEsz+ XEyz Esg+ X Eay
rank E42 E43 = rank E42 E43 E44
0 E53 0 E53 E54

Thus, by Lemma 3b), there exists a matrix

ny— (i1 +72) n2 ng nyg

F F, Fj F4]
such that
0 E3; FEs3 Es, B3Fy Asy+ BsFy, Asz+ B3F3 A3+ B3Fy
( 0 Fyg FE4y3 Fyy 0 Ay Asz Aya )
0 0 FEs3 Esq |’ 0 0 As3 Asq
0 0 0 FEgqy 0 0 0 Aga

is regular, of index at most one, and stable.
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Constructing F as in (25), by condition (32), we know that (E, A + BF) is regular, of
index at most one and stable. Furthermore, if we compute H from

(G3+ XG32)+ B3H =0,

then we also have that (15) holds. O
If we also allow derivative feedback then we obtain our last result.

Theorem 11 Given a system of the form (1). There ezist matrices FK € R™ "™ and
H € R™*? such that (E + BK, A + BF) is regular, of inder at most one, stable, and (26)
holds if and only if the five conditions (7), (16), (17), (27) hold and furthermore

TL([ A As ])A2Se(TT(A3)AY) (33)

18 of full row rank. Here the spaces Ay, A,, A3 are as in (12) and the indices T, i and v are
as in (13).

Proof. Let U,V € R™ " be orthogonal matrices such that U7 (sE — AV, UTB,Ccv,UTG
are in the condensed form (11). Then condition (33) is that

Eu 31 A11 Bl Ell
To(| 0 0 |) | An | Su(TE(] 0 )| 0 |)
0 Bg A31 BB 0

has full row rank.

Necessity: Conditions (7), (16), (17) and (27) follow directly from Lemma 3d) and
Theorem 9, respectively. It remains to show condition (33).

Assume that F, K € R™ " and H € R™*? are such that (E + BK, A + BF) is reg-
ular, of index at most one, stable, and (26) holds. Let matrices P, P, Ey, A, G;, B,
i = 1,2,3, and integers ty,t5,t3 be defined as in (21)-(23). Then (PTUT(s(E + BG) —
AV, PTUTB, PTUTH, CV) are of the form (11). By Theorem 10 we have

En+ BiGy A115:' By Ey %11500(1?11) B,
rank 0 AnS 0 = rank 0 421500(1311) 9
B3Gy A3S Bs 0 A3Sw(En) Bs
= ti+ia+1t;3
i1 + fig + M3
) En+ BiGy En B An |
with S = S ( 0 ). Thus we have that TL(| 0 0 |[)| Aa | S is of full

B3Gl 0 Bg A31

row rank and hence (33) follows.

Sufficiency: Let an orthogonal matrix Py satisfy (22), then (27) implies that (23) holds.
Since (16) and (17) hold, it follows by Lemma 4d) that there exist Fy, G such that (F+
BGo, A+ BFy) is regular and of index at most one. Hence

det(UT (s(E 4 BGo) — (A + BFy))V) # 0,

and
deg(det(UT (s(E + BGo) — (A + BFp))V) = rank(UT (E + BG)).
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Similar to the derivation of (30) and (31), a direct calculation yields that

fig = ny, Egsy =0, Agy4 is nonsingular, (34)
and
Eq2 FEas Ey; Ejy Eyy
rank E42 E43 = rank E42 E43 E44 . (35)
0 Ess 0 FEs3 Esy

Furthermore, by (23) and (34) we have

n2 + n3 < i3 + ng + ns.

Note that Ejy; is nonsingular and Es3 is full row rank, thus, as in the construction given
Theorem 2.4 of [5], there exists a matrix X € R®*% guch that

XEz XE3 Ey Ez
rank Ey4 Fys =rank | Fy, Eqs |, (36)
0 E53 0 E53

With this X, by (35) and (36) we have

E]l E12 E13 EM

0 By Exz3 Ey ) XEz»; XEy
rank 0 XE22 XE23 XE24 = rank(En) + rank E42 E43 . (37)
0 Es2 FEg  Ey 0 Es3

ny n2 N3 ny
Compute K := [1(1 K, Kj; 1(4]fr0m

B[ Ky Ky K; K, |+ Bn Ex Eny Fisy ] =0,
then, since (33) is equivalent to
ra,nk(/iuSoo(En)) - ﬁ?a

and since we have already shown that (34) and (37) hold, similar to the proof of "sufficiency”
in Theorem 10, we obtain an orthogonal matrix Q; € R™*™ and a matrix F such that

[PIT I]UT(s(E+BK)—(A+BF))V [ @1 1]

ty + g ny = (t1 + ng) n n3 N
t1 [sO1 — @y P42 sk — Agg sE13 — Ay sEyq — Ay
fg -y Y sEq; — A sE33 — Ags sEyq — Agy
3 0 —®3; $(XEp) — @33 (X Es3) — B34 (X Epq) — B34
T ny 0 0 sE4 — Az sE43 — Ay SEq— Agq |’
g 0 0 0 sEs3 — As3 sEsq — Asg
n 0 0 0 0 sEgqy — Agq |
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where

0 XE3; XE; XEy O3, P33 D3y Dy
([ 01, } [ &y, }) ( 0 Ey Eu  Ey 0 Ay Asyz Ay )
0 0 0 Eg4 0 0 0 Agy

are both regular, of index at most one and stable. Because of (37), we know that (E+BK, A+
BF) is also regular, of index at most one and clearly (E' 4+ BK, A + BF) is stable.

Finally, we determine H from B3H + (G3+ XG3) = 0, and then it is easy to see that (26)
holds. O

4 Conclusions

In this paper we have studied the disturbance decoupling problem with stability for descriptor
systems with feedforward. Necessary and sufficient codifions are given under which there
exists a solution to the disturbance decoupling problem via a proportional and/or derivative
feedback that also makes the resulting closed-loop system regular, and/or of index at most
one, and stable. All results are proven based on condensed forms that can be computed using
orthogonal matrix transformation which can be implemented in a numerically stable way.
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