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Abstract

We study the disturbance decoupling problem for linear time invariant descriptor
systems. We give necessary and sufficient conditions for the existence of a solution to
the disturbance decoupling problem via a proportional and/or derivative feedback that
also makes the resulting closed-loop system regular and/or of index at most one. All
results are proved constructively based on condensed forms that can be computed using
orthogonal matrix transformations, i.e., transformations that can be implemented in a
numerically stable way.
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1 Introduction
We consider linear and time-invariant continuous descriptor systems of the form

Az(t) + Bu(t) + Gq(t); z(0=) =20, t >0
Cx(t), (1)

ty
< 8-
R N o,
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where £, A € R**" B e R"™™ G e R, C ¢ R¥*" and i = dz/dt. The term ¢(t),t > 0
represents a disturbance, which may represent modelling or measuring errors, noise or higher
order terms in linearization. We study the problem of constructing feedbacks that surpress
this disturbance in the sense that ¢(t) does not affect the input-output behaviour of the
system. In this paper, we always assume without loss of generality that B, G are full column
rank, and C'is full row rank, i.e., rank (B) = m, rank (G) = p, rank (C) = q. If this is not the
case then this can be easily achieved by considering appropriate submatrices after a change
of basis. In the following we denote a matrix with orthogonal columns spanning the right
nullspace of a matrix M by Se(M) and a matrix with orthogonal columns spanning the left
nullspace of M by To(M). Moreover, we denote the polynomial degree of a polynomial f(s)
by deg( f(s)) and by rank [-](s) the rank relative to the field of rational functions.
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When E =1, (1) is a standard linear time-invariant system. Our attention, however,
will focus on the case that E is singular. In this case existence and uniqueness of (classical)
solutions to (1) is guaranteed if (E, A)is regular, i.e. if det(a E—fBA) # 0 for some (o, 8) € C2,

The system (1) is said to have index at most one if the dimension of the largest nilpotent
block in the Kronecker canonical form of (E, A) is at most one [9]-

It is well-known that systems that are regular and of index at most one, can be separated
into purely dynamical and purely algebraic parts (fast and slow modes), and in theory the
algebraic part can be elminated to give a reduced-order standard system. The reduction
process, however, may be ill-conditioned with respect to numerical computation. If the index
is larger than 1, then impulses can arise in the response of the system if the control is not
sufficiently smooth [3, 5, 10, 15]. Therefore, an appropriate feedback control should be chosen
to ensure that the closed-loop system is regular and of index at most one. The disturbance
decoupling problem for descriptor systems has been studied in (1, 14, 13, 12]. Fletcher and
Aasaraai [13] were the first to formulate and to solve the problem with respect to contin-
uous descriptor systems. However, as the problem has been formulated there, disturbance
decoupling is achieved if, among other conditions, the output is independent of the input dis-
turbance in the sense that there is a set of admissible initial conditions such that the response
of the system is zero. But, since the disturbance input is usually unknown, it is not clear
how, and if at all, a given initial state o can be qualified as an admissible initial condition.
Banaszuk et al. [14] solve the problem using the concepts of sliding and coasting subspaces
by means of a set of necessary and sufficient conditions for obtaining disturbance decoupling
in implicit discrete systems. Lebret [12] presents structurally equivalent characterizations
of the solutions of the disturbance decoupling problems for implicit discrete systems. Re-
cently, Ailon [1] considered the standard disturbance decoupling problem for continuous-time
descriptor systems as formulated in the standard state-space system theory [17], i.e., given
the system (1), find (if possible) a proportional state feedback such that, regardless of the
initial value of zg, the disturbance input has no influence on the output of the systems for
t 2 0. and yet the uniqueness of solutions for the closed-loop system is ensured. Necessary
and sufficient conditions for the cases rank[ E G } = n and rank[ E B G ] = n are
obtained in [1] via analogy to standard state-space svstems. But the obtained conditions are
rather cumbersome and are only partly given in terms of the original data (L, A, B,C,G).
Moreover, the derivative and combined derivative and proportional state feedback, the index
and numerical aspects of the algorithms have not been considered in [1].

According to [1], a proportional feedback u = Fz solves the disturbance decoupling prob-
lem in system (1) if the matrix pencil (E, A + BF) is regular, and

C(sE=(A+BF))"'G =0

The above discussion leads us to study the following problem:

The disturbance decoupling problem For a system of the form (1) find necessary
and sufficient conditions under which there exists a proportional and derivative feedback of
the form u(t) = Fz(t) — Ki(t), such that matriz pencil (E+ B, A+ BF) is reqular and

C(s(E+ BK)—-(A+ BF))"!'G =0,
where C(s{E+ BR)—(A+ BF))™'G is the transfer-function matriz of the closed-loop system
(E + BR)z(t) (A+ BF)z(t) + Gq(t) (2)
y(t) = Cz(2).



In addition, if possible, it is required that (E + BK, A + BF) is of indezx at most one.

This paper is strongly inspired by the work in [3, 4, 8]. We give necessary and sufficient
conditions for solving the disturbance decoupling problem. All our results are proven con-
structively, based on condensed forms under orthogonal matrix transformations which can be
implemented as numerically stable algorithms.

2 Preliminaries

Given an arbitrary matrix pencil (E, A), it is well-known [9, 8, 16] that there exist nonsingular
matrices .X' and Y transforming the pencil (£, A) to Kronecker canonical form (KCF)

N(sE = )Y = diag {s] = Jg, Leyye oy Leyy8Joo — I, LT . LT}, (3)

m?

where J; € R™*™ and J,, € R™ %™ are in Jordan canonical form. Here Joo is nilpotent
and associated with the infinite eigenvalues of the pencil. The matrix L is a bidiagonal
matrix of size & x (k 4+ 1)

L=

s -1

and the index sets {¢;,i = 1,...,s} and {n;,7 = 1,...,t} are the left and right Kronecker
indexes of (E, A), (see [16, 8]). Il we define

sEy— Ay = diag{sl - J;,Le,,..., L.},
(4)
sEy — Ay = diag{sJoo — [,LT ... LT},

then E) is of full row rank, and sE; — Aj is of full column rank for any finite s € C.

It is in general impossible to compute the Kronecker canonical form with a finite precision
algorithm, since this is an ill conditioned problem, small changes in the data can drastically
change the canonical form. Instead one can obtain a condensed from under orthogonal equiv-
alence transformations. This form, the generalized upper triangular (GUPTRI) form is well
studied [6, 7, 8] and has been implemented in LAPACK [2]. It displays all the invariants, in
particular the left and right Kronecker indices, but it is not the complete canonical form.

Lemma 1 [6, 7] Given a matriz pencil (E, A), E, A € R™*! there exist orthogonal matrices
P e R™", Q€ R such that (PEQ, PAQ) are in the following GUPTRI form:

4 {y I3 Iy
m | sEn—-An sEia- A sEiz— Az sEyy— Ay
Cbrer o 0 sEyg — Az sEj3 — Apg sEqy — Aoy
Pisk - A)Q = - 0 0 sEss— Ay sEgu— Agy > )
ny 0 0 0 SE44 - /144

where sEyy — Ayy contains all the L; blocks of sSE — A, sEj3 — Aqg and sEsz — A3z are upper
triangular and regular, and contain the regular finite and infinite structure of sE — A, and
sEyy — Ayy contains all the L]T blocks of sEE — A.



Using the GUPTRI form, we are able to determine the indices and spaces that we introduce
in the following definition.

Definition 2 Given a matriz pencil (E,A), E;A € R™ in Kronecker canonical form (3).
Then

r(E,A) = nytea+...+¢,

C,’(E,A) = "oo+771+---+77h
define the row and column index of (E, A), respectively.

Furthermore we define the row-subspace V:(E,A) and the column-subspace V.(E, A) of
(E, A) by

Vi(E,A) = span(XT[[ 0 ])
n—r(E,A)

span(Y [ Il_c'éE'A) ])

Il

E, /l)

From Lemma | we obtain the indexs ri( E, A),c;(E, A) and the spaces V.(F, A),V(E, A)
directly as
T'i(E,A)=TL1+Tl2, Ci(E,A):l3+lq

and

ny+n4

V.(E. A) = span(PT [ I ’ ])7 Ve(E, A) = span(Q [ 11.512 }).

It is obvious that
rank (sE — A) = ri( E, A) + ci( E, A),
and if I, A;. (i = 1.2) are defined by (4), then

) = range(TL(Vi(E, A)EV(E, A)),

range (E2) = range(VI(E,A)ES(VI(E, A))),

range(Al) = range(TL(Vi(E, A)AV(E, A)), (6)
) = range(VI(E,A)AS(VI(E, A))).

range ( £y

The following lemma gives a useful characterization of regular, index at most one pencils.
Lemma 3 [3] Given E.A € R**". Then the following are equivalent:

1. The pencil (E.A) is regular and of index at most one;

2. rank([ E AS(E) D =n

» E
3. rank ([ TOTQ(E)A ]) =

4. TE(EYASw(E) is nonsingular;
5. deg(det(sE — A)) = rank (F).



If the system is not regular and of index at most one this can often be achieved by feedback.
A characterization, when this is possible is the following:

Lemma 4 [3] Given E, A € R**", B ¢ R"*™,
a) There exists F € R™*™ such that (E, A+ BF) is regular and of index at most one if and

only if _
rank [ TI(E)ASw(E) TLI(E)B ] = n - rank (E). (7)

b) There exist F, k' € R™*" such that (E + BI', A + BF) is regular and of indez at most one
if and only if

rank (TZ([ E B |)ASw(TL(B)E) = n - rank [E B (8)
¢) If (8) holds, then there exists k' € R™*™ such that (E + B, A) is regular and of indez at

most one.

After having introduced some preliminaries, in the next section we now discuss some suit-
able condensed forms for triples and quintuples of matrices under orthogonal equivalence
transformations.

3 Condensed Forms

In this section we introduce condensed forms under orthogonal equivalence transformations.
The key Lemma that we will use frequently is the following;:

Lemma 5 Given £.1 € R, B ¢ RS with B of full column rank. Then there erist
orthogonal matrices U € RV € R such that

-4 L
) ti [ By Ena o b | By
UEV = t,| 0 Enl|, UB=1t, | B,|,
i3 i 0 E32J t3 0
-4 L
) [ An Ax
UAV = 1 | Ay Aga |, (9)
t3 | O Az |

where Eyy and By are of full row rank, and
rank(sE;;;; — A32) = ll, Vs e C

Proof. The proof is given constructively via Algorithm 1 in Appendix A. 0O
Using Lemma 5 and the GUPTRI form (5) we obtain the following condensed form for
quintuples (E. A, B,C.G).



Theorem 6 Given a system of the form (1), there ezist orthogonal matrices U,V € R**n
such that

‘nl ny ns n nog ns
p -Eu Ei, En p Ain A A
fg | E21 Epy FEps niy | Aan A2 Ay
UEV = 1~l3 0 E32 E33 5 UAV = ﬁg A31 A32 A33
ng | 0 Egp Ey3 g | 0 Ay Ags
ﬁ5 R 0 0 E53 fls 0 0 A53
p [B p |Gy
o B2 ny 0
Up = n3 B3 y UG = flg 0 ) (10)
T4 0 Ny 0
ns | 0 g 0

np nz2 13

cv = [0 ¢ G,
where G\, Eyy, B3 and Ey; are of full row rank and furthermore

rank (3E53 - A53) = ng, Vs € C,

sEgp — Ay sE43— Ags
rank 0 sEs3 ~ As3 = ny+mn3, VseC.
Cs Cs

Proof. The proof is given constructively via Algorithm 2 in Appendix A. 0O
Using these two condensed forms we can characterize the following indices which are
needed for the solution of the disturbance decoupling problem.

Corollz&ryj )
a) Let E, A, B be in the condensed form (9). Then

p = ri([E O],[ A B ]):tl,
a(TT(BYE, TE(B)A) = 1.

v
b) Let E, A, B,C,G be in the condensed form (10), then

. TI(G)E 0 TI(GYA TE(G)B |, _ .
T = 1y 0 o | C 0 ) = 7y,
A e L L O 1 [
n := rank(TL(G)B)-r

+7‘.‘([ Tg;([ BO G ])E ]’[Tg([ BC G ])A ])=ﬁ3.



Corollary 8 Given a system of the form (1) in condensed form (10). Then we have the
following implications.

a) If condition (7) holds, then Es3 = 0 and Asz is nonsingular.

b) If condition (8) holds, then Es3 = 0, Asz is nonsingular and

Ey Ey, Eiz3 By Enw E, B

| Ea1 Eaa Eyp By | ) 2 En B,
rank 0 E;3, Ezz Bs = rank 0 E; By |’ (11)

0 E42 E43 0 0 E42 0

Proof. a) According to Lemma 4, there exists F := [ R B K ] such that (E, A+ BF)
is regular and of index at most one. Hence,

rank(sE53 - A53) = fls.

But sEs3 — Asy is full column rank for any finite s € C and thus, ny = #t5 and det(sEs3 —
As3) = det(—As3). Therefore, the nonsingularity of As; follows directly from the regularity
of (E,A+ BF). Moreover

rank(E£) = deg(det(sE — A — BF))

[ SEy - Ai = BiFL sEyz — Ay — By Fy ]
Ey — Ay — BoFy, sFE9y — Ay — B, F
= deg(det( s ilAgl —2'1B3F12 ! SE;; _ A;Z . B;F; )) + deg(det(SESS - A53))
i 0 sEyp — Agg ]
[ sEi1— A — BiFy sEj3— Ajp— BiFy ]
~  deg(det( sEy — A1 = BaFy sEyp — Ay — By By )
-0k —As1 - B3Py sEs — Ay — B3 Fy
i 0 sEqy — Ay ]
En Er
o Ea Ea
< rank( 0 Es )
0 FEyp
But, we have
Eyn Ey
rank(E') > rank( En Ly ) + rank( Es3)
0 FEy

and hence Fs3 = 0.

b) Using Lemma 4 there exist F := [ N Fy, F3 ] and K ;= [ K, Ky K ] such that
(E+ BRI, A+ BF) is regular and of index at most one. Since Es3, As3 are not affected by
feedback it follows from part a) that Es3 = 0 and that Asj is nonsingular.

Similar as in a), we can prove that

Enw+ By Epp+ Bk,
Eq + Boiy Eyxn+ B K,
B3 K, E3; + B3 K,

0 E4

rank(E + BLK') = rank(



However, since Es53 = 0, we also have

En+ Bk, E2+ B K, Ei3+ Bk
. En+ BoKy Ex+ Byky Ejz+ Bohs
k(E+ B k . i
rank(E + BR ) rank( Bk, Fsq+ B3K, Es3+ Baly )
0 Eq Ey3
Eyw+ BiKy Ey2+ B K,
Ey+ B2 Ky Ejp + By K,
> k .
2 rank( B3I, FEs2 + B3 K, )
i 0 Eyqy
and hence
Eyw+ Biky, En+ Biky Ep+ BiK3 Enw+ Bk, Eip2+ B K,
| FE IR Bt By Eod DS | BB Bt s |,
B3k, E3; + B3k Ezz+ Bak BiK, Es2 + B3
0 Ey2 Ey3 0 E4

which implies (11). 0O

In this section we have discussed condensed froms. Both forms will prove very useful
in studying the disturbance decoupling of system (1) by proportional and derivative state
feedback, respectively.

4 The range of ranks for s(E+ BLK) — (A + BF)

Since the existence of solutions of the disturbance decoupling problem (without index require-
ment) is equivalent to the existence of matrices F, A" such that -

rank(s(EF+ BK) - (A+ BF)) = n,
rank (C(s(E + BK) - (A+ BF))™'G) = o,
we discuss in this section the pessible values of rank (s(£ + BA) — (A + BF)) that can be

achieved. The following theorem gives the key tool for the solution of the disturbance decou-
pling problem.

Theorem 9 Let matrices E, A € Rt*!, B E.Rt”‘be given.
a) There exists F € R°*}, such that rank(sE — (A + BF)) = r if and only if

p+7§r§min(1,rank[sE—A B]), (12)
where p and v are defined as in Corollary 7a).
b) There erist F. I € R**}, such that
rank (s(E + BK) - (A+ BF)) =+
if and only
rank | sE- A B ] - rank(B) <r< min(l,rank[ sE— A B ]). (13)



Proof. For orthogonal matrices U,V such that (UEV, UAV, UB) are in condensed form
(9), and for F, k' € R** partition

Fv=|Fh B, kV=[K K]
Let also {; be as in (9). a) A simple calculation yields that for any F,

rank (sE — (A+ BF)) = 7 4+ rank [ sEu = Au =Bk }

—An - By Fy
Since Eyy, B, are of full row rank this implies that

p+v = rank(sEy — Ay — BiFy) 44
< rank(sE — (A + BF))
< y+min(p +t3,0 - 7)
= min(l,rank[ sE-A B ]),

which implies (12). Conversely let r be any integer satisfying (12). Let (2, Z be orthogonal
matrices such that

: e An | P P2 B, _ | Bu B
E“Z—[—J” 0]’ [Azx}z_[q’zl $y |’ B, ©= By 0

with nonsingular X4, By,. Choose

-1 _p-l o
poq| THyt G

where A is any matrix of suitable size satisfying
rank (A)=r—p—~.

Then we have

rank (sE ~ (A+ BF))=p+ v+ rank (A) = 7.
b) For (E, 4. B) in condensed form (9) choose P,Q orthogonal such that

F, _ 0, An _ b, B, _ 0 0
o 30 50 R ol S0 PO 4 L A
Enw By

0 B,
rank. Therefore. there exists an orthogonal matrix Z such that

01 7 = [0, 0 o, 7= | 2%u %
0 | ©21 O |’ 2, Py o2 |
with ©,; nonsingular. Then for any F, k' € R**!, we partition

[ ., Ry . Ky Ky,
F Z = N I\ Z = . .
1 | Fy Fy ] ! [ Ky Ky

with ¥, nonsingular. Note that is full row rank, hence also O, is of full row

9



accordingly and obtain

rank (s(E + BK) - (A+ BF)) =y

8911 - @11 —4)12

nk . . .
+ora $(O21 + Wok'11) = (P21 + V2 F11) 5(Og + Vol13) — (Po2 + ¥ Fa)

This implies that

v + rank (sOyy — ®yy)
rank (s(E+ BK) — (A + BF))
-y + min(l - v,t; + p).

IA A

Thus, (13) follows directly from Lemma 5.
Conversely let r satisfy (13). Set

[ Iy Iy, ] = -yl [ Py Py ], [ Ky Ky ] = -yt [ 021 Op-A |,
where A is any real matrix of suitable size satisfying
rank (A) = r — v — rank(04,).
With these F and L', we obtain
rank (s(E + BK) — (A + BF)) = v + p+rank(A)=r.
a

Remark 1 In Part a) of Theorem 9 if r = min(l,rank[ sE-A B ]), then we can also
choose F’in the following way.
Let orthogonal matrices P, W, Q be chosen such that

[z o RETE
P¢22‘/V—‘[0 0]7 PB21Q_[\I"21 ‘1,22}7

where ¥, W,,, ¥,; are nonsingular. Then choose

F::Q[g F.g?]zT (14)

with Fyy = Q [ 8 B\ } WT, where A is any matrix of suitable size such that [

0 has
A
full rank.

In Part b) of Theorem 9 if r = min(l,rank[ sE—A B ]), then we can choose k' = 0

and F as in (14). We can also choose F = 0 and construct an appropriate " similar to that
in the construction of F in (14).

o™

Theorem 9 will be applied in many different ways to prove the existence and also to
construct appropriate feedbacks for the disturbance decoupling problem.

10



5 Disturbance Decoupling Without Index Requirement

In this section we derive necessary and sufficient conditions for the solvability of the distur-
bance decoupling problem without imposing the requirement that the index of the closed-loop
system is at most one. We need the following lemma, see also [1].

Lemma 10 Consider a system of the form (1). If (E, A) is regular, then the following are
equivalent:
a) C(sE - A 'G = 0:
sE-4A G
b rank 5 =1
) 1'1311\ [ C 0 } n;

T
c¢) rank [ T‘x’(G)(LiE - A)

l = n — rank (G).

Proof. The proof follows directly from the fact that if det(sE — A) # 0 then

sFE—A G

rank (C(sE — A)"'G) = rank [ c 0

} —rank (sE — A).
g

Our next theorem yields the solution for the disturbance decoupling problem in the case
that no index requirement is given, i.e. we require regularity and disturbance decoupling.

Theorem 11 Consider a system of the form (1).
a) There exists a feedback matriz F' € R™*™ such that the pencil (E, A+ BF) is reqular and
C(sk — (A + BF))™'G = 0 if and only if the following three conditions hold:

rank [ sE-A B ] = n; (15)
sE-A B sE-A B G ,

rank [ c 0 } = rank [ c 00 J, (16)
T+p < n-p, (17)

where 7, are as in Corollary 7 b).
b) There exist feedback matrices F, K € R™*™, such that the pencil (E + BK,A + BF) is
regular and C(s(E + BR) — (A + BF))™'G = 0 if and only if conditions (15) and (16) hold

and furthermore

ank [ TL(G)(sE - 4) TL(G)B } ek [ T1(G)B

C 0 0 ]Sn—p. (18)

Proof. By Theorem 6 there exist orthogonal matrices U,V such that UEV, UAV, UB,
C'V, UG are of the form (10). Thus for the proof we may assume w.l.o.g. that the system
is already in form (10). Since the proof is constructive, a numerical method can be based on
this proof after first transforming to condensed form.

a) Necessity: Let FF € R™*" be such that (E, A+ BF) is regular and C(sE — (A +
BI'))~'G = 0. Partition F =: | Fy F, F3 | compatibly with (E, A, B). From Lemma 10

11



we have that

rank (sE - (A+ BF)) = n,
rank [ sEy — (A1 + By Fy) ]

n—p-—ng — ng.
—As; — BsFy p=n2 3

Hence, conditions (15) and (17) follow directly from Theorem 9. From Lemma 10 we also

have that
K sEF~-A—~BF @G o K sEFE — A— BF
ran C o | =n=ran C .

Hence we have

| sE-A B G| _ k-sE—A-BF B G
ran C 0 0 = ran C 0 0
B krsE—A—BF B
= Tan C 0
B mnk'sE—A B
- c o

which implies (16).
Sufficiency: From (15), (16) and (17) we deduce the following three conditions

[ sE-Aw sEs-An] _ .
rank 0 sEss — Asa | = N4 + ns; (19)
p+7 < m<pt+ng+az=p+r1+; (20)
SE11 - An ) B] ) .
rank | sE21 — Ay By = ptug+iz=p+T1+1. (21)
— Az B; |

By partitioning Bj into two row blocks and using orthogonal column compression (see [11]),
we may assume w.l.o.g. that

m+n1—p—fz2—ﬁ3 p+ﬁ2+ﬁ3—n1

P Vi ¥y
B, -
ny \1’21 ‘1122
32 = ~ 9
B n—p-fy L L&D
3 p+ g+ nz—mn 0 Vo

where W3, is full of row rank and ¥4, is nonsingular. Anologously then

_ | —®31 5033 — B33 5033 — P33
—A3y $E3y — A3y sE33 — Asz ] = [ —®By 504 — Byy $O43— By3 |

Using Fy, := —\Il4_21<1>41 we then obtain from (21) that

sEyy — An = V2 Fy ¥y
rank | sEq; — Ay — Voo Foy Wop | = ng. (22)
=3 - U3 Fyy Vs

12



Thus, from Theorem 9 we obtain that there exists Fj; such that

sEvy— A = Vb — ¥y
rank | sF2 — Ao — Vaoly — VYo Fy | = ny. (23)
— &3y — V3o by — U3 Fy

Since sE53 — Asg is-of full column rank for any finite s € C and since (19) holds, it follows
that

rank (sEgg — Aygp) = iy (24)
and

rank (sEs3 — As3) = is = n3, Vse C. ‘ (25)

Therefore, Theorem 9 implies that there exists Fy; such that

Q4 — By — Vol 043 — Oy3
rank sy — Ay sEy3 — Ayz | = ng + n3.
0 SE53 et /‘53

Now. set

I 0 0
F = .
[ o Fp 0]

Then we have that

skl — A - BF
[ sEy — Apn = YnaFu =Yk sEyp — Ay — Vil sEi3— Ay ]
sEyp — Ay = Vo Fyy = Voo koy sEgp — Agg — Vo Fyy sEp3 — A
=31 - V51 Fiy — ¥a2 b 803; — B3y — U3y [y 8033 — Pag

' §O4y — Py — Vyolyy 50,45 — By

sEy — Ay skys — Ay3

L sls3 — As3

.‘

Clearly. for this F, the pencil (E, A + BF) is regular, and Lemma 10 implies that C(sE —
(A+ BF))"'G =0.

b) Necessity: Let F, ' € R™*" be such that (E+ BK, A+ BF) is regular and C(s(E +
BR) — (A + BF))™'G = 0. Then as in a), we have that

rank [ sE~ A B | =rank | s(E+ BK) - (A+ BF) B |=n,

and
[sE-a4 B _ [ (E+ BK)-(A+ BF) B
ranl\[ c 0 ] = rank - C 0
B k'qE+BKy4A+BF)B G
= e c 0 0
— k| SE-A B G
= ran L C 0 0 )

which implies that (15) and (16) hold.
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On the other hand, from Lemma 10, we have that

rank s(E21 + By K1) — (A1 + By Fy) e h e
—(Az + BslY) P %

and thus (18) follows directly from Part 2 in Theorem 9 b}.
Sufficiency: Because of (18), we may assume w.lo.g. that

m+ng~p-ny—~iy p+ng+iz—n

B, P L 271 L P!
By, |=n-p Vo Y22
Bg p+fz2+ﬁ3—n1 0 ‘I/32

with nonsingular ¥3,. If this were not the case, then, by performing a singular value decom-

position, (see [11]),
B, [o o

with ¥ nonsingular and diagonal, we can partition

m+n—p—~ng—n3z p+ g+ iz —ny
0 _.m—p 2% L P
S| T pt g+ it — g 0 ¥3) '

Denote the associated transformed parts of E and A similarly as

sky — Ay sEa — Agp sEy3 — Ay
- Az sE33 — A3y sEsz — Az
_.| 8021 — Par 502 — By 50,3 — Dy
"] 8031 — ®3; O35 — D35 5O33 — Py
and set
If‘)l = —‘11521 031, F21 = —\Inglq):;l.

Using (16), similar to the proof of sufficiency in a), we have

s(En+ ¥i2Ka1) — (A + V2 Fyy) ¥y
k . =ny. 26
ran [ 8(O21 + Yau K1) — (P21 + VU2 Fyy) Wy, m (26)
Thus, from Theorem 9 we get that there exists a matrix Fy; such that
S(En 4+ ¥i2K01) = (A + U2 Fyy) — ¥y FYy
k A = ny. 27
ran [ 5(O21 + Vo2 K1) — (P21 + Vo2 Foy) — ¥oy Fyy " (27)

Using (15), we obtain conditions (24) and (25), hence Theorem 9 yields that there exists Fy,
such that ‘
8037 — P33 — U3 Fy; $O033 — B33
sE4 — Agy $Eg — Agz | = ny + na.
sEs3 — As3

14



Now, with
T o oo [FR 0 o
I\_{Km 0 0] F—[Fm Fy; 0}

s(EF+ BLK)—-(A+ BF)

S(En + W) = (An + Y Py + Vi Fay) sE — (A + Ui9kFy) sE3 — Ans
$(O21 + Voo ) = (P + Yo Fiy 4+ Y2 Fo1) $O20 — (B0 + ¥y Fyy) 30,5 — oy

we obtain that

= 0 5032 — (P32 + U3217,) 033 — 033
0 sEyy — Ay sEy3 — Aug
0. 0 .SE53 - A53

Clearly, for these F, k', we have that (£ + BN, A+ BF) is regular, and Lemma 10 implics
that C'(s(E + BK) - (A + BF))"'G=0. D

Remark 2 Tor the construction of the matrices Fyq, Fyy in the proof of Theorem 9 b), we have
used in (23) and (27) the term 'Ilgzl. An alternative construction to compute an appropriate
I without the explicit inversion of ¥, is as follows:

Since (23) holds if and only if

[ sEvq — Ay ¥y ] Vi
T I 2T VIR 27) Vo _ .
lalll\( . Vs + W oy [ Inl 0 }) =m + ra.lll\(\I’42),
~® 4y L 2P 0

we can first perform an orthogonal transformation such that

[(sEq - Ay ¥yp ] sEy - A »

sEy — Ay ¥a2 Zu Zi | _ | sEa - Ay
—®y LEV! [ Zn Zan ] B —b3 * ’

-%y Vo | 0 V.,

where Z;; € R XM ¥y, is nonsingular and W4, has the same size as ¥,,. Because
) 0
by Vi
W3, is of full row rank and, in addition, since W45 is nonsingular, Z;, is also nonsingular, so
we can use the numerical procedure given in Remark 1 to obtain Fy; satisfying

is of full row rank, also E; is of full row rank. Moreover, we know that

31?11 - /111 -V
rank SE21 - A21 - ‘I’len = ny.
—®3y — Uy Fiy

The technique above can be easily generalized to compute Fyy such that (27) holds without
explicit inversion of W;.

Remark 3 Condition (16) has also been obtained in [1] under the additional assumptions
that rank[ E G ] :nandrank[ E B G]:n.

By exchanging the roles of E and A, we can obtain analogous results for the case that
only derivative feedback is used. The results are listed in Appendix B.
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6 Disturbance decoupling with index requirement

In the previous section we have obtained necessary and sufficient conditions which ensure
that there exist feedback matrices F, A" such that (£ + BK,A+ BF) is regular and C'(s(E +
BK) - (A4 BF))™'G = 0. However, as pointed out in Section 1, it is very important to
take the index of the systems into account whenever one designs a controller for a descriptor
system. Motivatived by this, we discuss in this section the disturbance decoupling problem
with the additional requirement that the index of the closed loop system is at most one. In
order to do this in a coordinate free way, we need to introduce some further spaces.

First we consider the smallest (with respect to dimension) row space and the largest col-
umn space that can be achieved in the closed loop system via state feedback and characterize
these spaces by Theorem 6. Set

~ T b3 T v
7, = minpVi( TI(GE | TX(G)A+ BF) )
0 C
. (NTe T ;
V. = maxpvy TL(G)E | T(G)(A+ BF) )
0 C
and introduce
A= To([ EV. B G ),
Ay = TT(A)EV,,
Az = TT(A))AV,, (28)
Ay = V,TT;(G)ESOO(f/CT)vC(A}"ESCO(VCT),AITASCO(VCT)),
As = TT(A)B

These spaces can be characterized we the condensed form of Theorem 6.

Corollary 12 Given a system of the form (1) in the condensed Jorm (10). Then

Eyy
range ( Ey ) = range(A,),
0ﬁ3Xn1 J

[ A '
range(| Az |) = range(As),
| Aai

E3;
range(| Eq {) = range(Ay),
0

B,
range(| By [) = range(As).
B;

Using these spaces and their characterizations, we can now approach the solution to the
disturbance decoupling problem with the requirement that the index is at most one.
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Theorem 13 Consider a system of the form (1). There ezists a feedback matriz F € R™%"
such that the pencil (E, A+ BF) is reqular, of indezx at most one, and

C(sE—(A+BF)~'G =0

if and only if conditions (7), (17) and furthermore the following two conditions hold:

rank (£) rank (A;) + rank (Ay) (30)
rank[ A2 A3So(A2) As ] = p+T1+y, (31)

where the spaces A;, are as defined in (28) and T, 3 are as in Corollary 7 b).

Proof. We may assume w.l.o.g. that the system is in the form (10).

Necessity: Conditions (7) and (17) follow directly from Lemma 4 and Theorem 11,
respectively. Hence we only need to prove conditions (30)-(31).

Let F' € R™*" be such that (E, A+ BF) is regular, of index at most one, and C(sE -
(A+ BF))™'G = 0. Then by Corollary 8, we have that Es3 = 0 and Asj is nonsingular. Note
that (£, A+ BF) is of index at most one, so

rank(E) = deg(det(sE— A — BI'"))

sy — A —BiFy sEyy— Ay — B F,

sEy — Ay — ByFy sEyp — Ay — By F,y ) (32)
—Az1 = B3I sE33 — Azp — B3I}

0 SE42 - 1142

+ deg(det(sE53 - A53)). :

= deg(det

where [’ = [ IR T a% ] is partitioned compatibley. Hence, from (32) it follows that

Evi Eyp

Ey, E
rank(E) = rank 2 E:Z
Ey

sEn-An—-BiFy sEna—- Ay - B F,
sk — A21 — BoFy sEjy — Agy — By Iy ) (33)
—A3 - B3k sEk3p — Azy — BaFy |7
0 sE4 — Ay

deg(det

Using that FEj,y, E4, are of full row rank, we can assume w.l.o.g. (by performing appropriate
equivalence transformations) that

0O 0 0 0 0 o
En = [0 S 0}7 E21—[221 0 0], 532—[0 Osy 0],
. Eiz 0 0
Eyp = [0 0 E42}a E12=[ 012 0 0], Ey =0,

17



where ¥;; € RP1*P1 5,y € R™X" ¥, ¢ R™MX™ jre nonsingular and Q3 € R(M2=)xt g of

full column rank. Partition comptabily

0 Dy B3 [ @, @5 &6 |

A BiFy = ( , A B F, =

e+ 515 | ®a1 Daz D3 12+ Sl | P2g Pos . Do |

Ay + Bl = | @31 @37 P33 ] s Ant BiF, = | &34 $35 Py ]
[ ¢, ©4 @ [ ®y Oy Do |

{ BF = n Pz Py B Py = a4 Pus Py

A+ st | @51 P52 B3 Asz+ Uslz | Psq P55 Psg ]

Ay = | Pey o5 Pes ] .

Then (33) yields that

TL(E12)®13 TOTO(EW)(I)MS:OO(EIZ)
b ,43 4455 ( Ev2) is nonsingular
TT(032)®53 TL(032)P54500(E12)
Hence, we know that )
TI(E12)®3
rank D43 =ny - p — Ns.
T (032)®s3

But, from Lemma 10 we have

§¥91 — @31 —P3p —Pa3
rank —-b4 ~®y4; P3| =n—-p-ng—nzg=n;—p
-5 —b5; —Os3

and hence
@43 -
: < <Ny = D= iy,
rank [ T£(®3z)<1>53 ] < rank [ s ] <nyp—p-— iy

Thus, by (34), we have ;
rank (TL(E12)®13) > p - 1,

(31)

(35)

(36)

where p — p; is the row size of ®,3. This implies that ;5 = 0 and hence (33) implies that

Eyy E
rank () = rank Eq + rank { 32 ]
0- Eyr
ni3xny

Thus. Corollary 12 gives (30).
I'urthermore, using (36) we have that

rank (®y3) = p — p1, rank [ 2;2 ] = rank [ Tg;(g;z)q’sa ] =n, —p-fy

and thus

En AnS B
rank | Eqy AnS By | =p+ g + ng,
0 A;}IS B3

18
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where

07'13 X1y

Then (31) follows directly from Corollary 12.

Sufficiency By Corollary 12 and Corollary 8 then it follows that Es3 = 0, As3 is nonsin-
gular. and furthermore (31) and (38) hold. Using conditions (17) and (38) and considering
that 2y, By and E4 are of full row rank, we can compute orthogonal matrices Py, P, 7,
Zy, W such that

9 P11 oy —pp— iy

E p-p | 0 0 0
Py [ E'” J Zy = p On In 0 ,
2 fig Ya 0 0

7-1.2 nl—fl2
Enz, = n, [221 0 ]

ng — 7~l4 fl4 ns

p—m [- O O15 O]
P, E; Ey3 3 24 O25 Oy
Py Er  Eo [ Zy } - M2 ) O34 O35 O3
I. Ez; Es3 I, ny—p—ny 0 O45 Oge
" Ey2 Egs p+ng+ iz —mn Os4 Oss Ose
ny . 0 42 Oge |
and ﬁ3 - tl m+ tl - 7_L3
pP—m L O V2
P, B, 21 Vo 1 2
[ P ] Bg W = ﬁz ‘1’31 \I’32 ’
: Bj t ¥ ¥y,
ng — i ¥s, 0

where ¢y := n; — p — fiy and £21,%321,¥51, 511, 4y are nonsingular. Moreover, O3, is square
because ny ~ fiy = p + iy + fiz — ny. Denote compatibly

A Ay A

P, VA
! P A1 Az Ap ! Z
2 I. As1 Az Az I
™ 0 Ay Ay 3

N2 p ty ma—Ng4 Ay ng

p—-p1 [P P12 B3 D4 D15 D6
P1 Py1 Doy Py D9y D5 By
_ M 31 P32 P33 b3y By B
T h Dy Py Py D44 D45 By |’
3 — b [ P51 Psp Ps3 P54 Dss P
g | 0 0 0 bey Pgs (DBGJ

19



P13 ¥ Yy
where t, := n; — p; — f23. From conditions (17) and (38) we have that | &, WU, VU, | is
P53 ¥Us; O
of full row rank and [ 213 J is square. Thus, we can compute F,3 such that
43

Qi3+ Viplos ¥y
b3+ Vo Foz Wy
P53 Vs,

is nonsingular. It should be pointed out that in this step, no matriz inversion is necessary.
The second step is to use the method given in the Appendix of [3] to compute matrices

Fi4, [5 such that the pencil

( Os4 Oss Psy+ W51 Fly P55 + U5y Fis (39)
0 242 ’ "I)Gzl 4)65
is regular and of index at most one.
Let .
o= =V ey, Flp= -V sy, Fiac= -V by,
zt
Fiin Fi2 Fiz Fiy Fis 0 T x
; - — k74 mxn
o= [ 0 0 Fp 0 0 0 Z2 € R™
I,
and
‘?11 ‘?12 ‘i’m ‘?14 ‘?15 R 2T 2P}
b b, . 4] d. 1/ P
byr @2 Py Poy Py o 21 W Fu Fi Fys Fuy Fis
P31 P3p Pyz B3y P35 |1 = Uy VY3 0 0 Fy 0 0
Py Puz Pyz Py Pus Vg WYy
b51 Psy P53 Py Pss s 0

Obviously, we have

¢, =0, 1=1,2,3
and (?'3 is nonsingular.
Note that Es3 = 0, and hence we have
Py Z
P'z (SE -A- BF) Z2
Iﬁ4+ﬁ5
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[ -—‘i’u_ —-‘512. —‘?w
$021 = @31 sy - P2 — &3
5L — B3 =& — P33

= -4 27 ~®y3
0 0 0
0 0 0
o 0 0

5014 — ‘?14
$034 — ‘?24
5034 — P34
~Pa44
§Os54 — P54
~ b,
0

$0;5 — ‘?15

$025 — P15

5035 — P35

5045 — Pys

$0s55 — P55

sYq2 — Pgs
0

016 — P16
$O2 — Py
5036 — P36
5046 — dy6
8056 — Psg
s0¢6 — Do
—Asg

Then by Lemma 10 it is easy to see that the pencil (E, A+ BF) is regular, of index at most
one, and C'(sE -~ (A4 BF))"'G=0. 0O

Theorem 14 Given a system of the form (1). There ezist feedback matrices F, k ¢ R™x"
such that the pencil (E+ BK, A+ BF) is regular, of index at most one, and C(s(E + BLK) —
(A + BF))~'G = 0 if and only if the conditions (8), (18) hold and

TI( A2 As [)AsSw(TL(A5)As) (40)

has full row rank, where again the A; are deined as in (28).

Proof. We may assume w.l.o.g. that the system in the form (10).

Necessity: Corditions (8) and (18) follow directly from Lemma 4 and Theorem 11,
respectively. Thus it suffices to prove that the matrix in (40) has full row rank.

Let F, ' € R™*" be such that (E + BK, A+ BF) is regular, of index at most one, and
Ey+ By By

C(s(E+ BR)— (A + BF))™'G = 0. Then, considering that .
B3[\| B;}

is of full

row rank. from (38) we have that

Ly + B i,y (/111+31F1)5:' B,
Eqn + BoKy (A + B2 F1)S B,

BgIX'I (A31 + BgFl)S B3
[ E + Bi K,
is of full row rank, where § := Sco(| E21+ Bz Ky |). Equivalently, we obtain that
B31\’1
Enn AnSe. By
En AnSe By
0 A3S, Bs
B, Ey 5
is of full row rank. Thus, using the relation between Soo(TL(| B, |) | Eq ) and S, we
, B3 0
have that N
Enw B An By Eyy
Tol| Ea By |)| An | SoolTE(| B2 |)| Ex |)

is of full row rank and condition (40) follows directly from Corollary 12.
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Sufficiency: First we construct K such that

Eq + Boiy _ Exn B B,
ra,nk[ Bk = rank 0 B, — rank B,

. E21 + B2/\'
= miny rank \

EFg+ B, En B B,
rank | E21 + B2 Ky = rank | Ey; By | —rank ] By
B;}I\"l 0 B3 Bs

Enw+ BY

= miny rank | Eq + ByY

BsY

Iy can be obtained as follows: Since E3p, B3 are of full row rank, we can compute orthogonal

matrices
P € RP*P, P, € R(ﬁ2+ﬁs)x(ﬁz+ﬁa)

and Z;, W; such that

E [ 01 012 ]
[ P ] E; 7, = 021 O2
P, - O 0 |’
0 | Q41 Oz |
B [ ¥y, 0 ]
1
[Pl P ] B wo= | R
2
B
3 | Yy 0

where Oy, ¥pp, ¥y, are nonsingular. Then we obtain A’y by solving the linear system

U Y22 Ti , _ | O On
[ ¥y O ] Wi k2= On Ou |

From the construction of K’y and condition (40) it follows that we have

Ew + Bk, A115:' By
rank | Ey + B2 K1 AuS By | =p+ izt n3,
B31\'1 Ang Bg

X Ey + Bily
where § := S.o(| Ey1 + B2&y |). Using this and condition (18), similarly to the proof of
B31\"1
sufficiency in Theorem 13, we can compute a matrix Fy and orthogonal matrices Py, Zy, Z2
such that
s(Ea + ByKy) — (A + B2 F1)

rank sBaky — (As1 + BsFy) = n—p—nz—Ng (41)
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( —%n — ¢ —-®13
s(En + ByKy) -~ (A + BiFy) 8021 — 21 ¥y — By —dyy
Py s(Ea+ BoKy) — (A + BoFy) | 2y = sXg — &3 2 - &35
sB3K — (A3 + B3Fy) ~d —-dy, ~dy3
L 0 0 0
[ O14 Oy5 ]
Eyy Q24 Oy
[ P } By |, _ | 0 O
I;, E3; 2T 0 04 (°
Ey Os4 Os;s
[ 0 =y ]
) RiTR
By ¥
P By = Us |,
B | Yy
| U5 |
] [ G ]
Gy Gn
Py | 0s,xp = | G |, (42)
073 xp | 0
L 0 -
[ $y3 . Py | . , .
where ¥,1,%,,%42 and | - are nonsingular, is of full row rank, and Qs is
(p43 \DSI

square. Partition compatibly

[ O
Ey3 O
Py | Eg =: O3
E33 Ou6
| Oss
[ P14 @15 P16 ]
Az A Dy Py Pye
{Pl J An Axn [Zz ] | ®as @y g
I;, A3z Aszz I, B Py Pys D6
Az Aga b5y P55 Pse
| D6y Pes ‘I’eaj

By conditions (40) and (11) we have that

O14 015 01 Yy Q14 O35 ¥y
0 045 @46 "I’41 0 (")45 \P41
k = k 43
ran Os4 Os5 Os6 Vs ranx Os4 O35 sy (43)
0 242 E43 0 0 242 0
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Again, let an orthogonal matrix Z3 be chosen such that

[ O15 Oi6 W 015 O16
025 O (:)25 ('_')26
O35 Os6 | , _ | O35 Oy
045 Oue ’ (:)45 (:)46
Os5 Ose Os5 Os6
| Y2 Ey3 ] [ 2 0|
Then (43) yields that
Oy (E)u; L 2T O ¥y
rank 0 Oy Yy | =rank 0 Yy
Os4 Os6 Vs Os4 ¥s
and in addition, we obtain that [ “I;‘” ] is of full row rank, and since Os4 is square, there
51

exist matrices Iz, I3 such that @54 + W5y i, is nonsingular and

O + ‘I’_nf\'z (E)ls + ¥y 13'3 i
rank L PRLC i (:)46 + lII“I}'g = rank (Osq + V5, \'2) (44)
Oss+ Us1h2 Ose + V513

Let [ K, K ] = [ 0 K ]Z;,T and K := [ N .1;'2 Ky ] then (11) and (44) imply
that

rank (E + BK) = rank (Z11) + rank (S91) + rank [ 054 +0\D5‘ K2 Oss ';:I;“I\'z ] (45)

Oy + Us Ky Oss + Usi Iy

and that [ 0 o

] is nonsingular.

Taking F := [ F, 0 0| VT, then using (45) and (41), it is easy to verify that (E +
B, A + BF) is regular and of index at most one, because if set accordingly

[ &5 & | [ ‘?15 (?16 1
@25 (I>26 ‘?25 ‘?26
P35 Pss P35 e
bys Pyp | Z3 =1 | Pus Pus
P55 Pse ds5 s
A42 A43 (i)65 666

L 0 As _ L &5 ‘i)76 J

then the nonsingularity of Ass, £42 and i42 imply that @76 is nonsingular, and we also have

Zs [I"’ 7 ]
I 3

na

Zy
[P‘ ](s(E+BI\')—(A+BF))
Iﬁ4+fl5
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[ =P —‘i>12~ b3 (014 +‘I’111_;'2)'—‘I’l4 3015 — ®15 5(O16 + Uy f3) — by |
8091 — 021 8%y — P Py $(Oz4 + Vorla) — @yq sOg5 — by5  5(Oy + Va1 R3) — dyg
sXg1 — @3 —®32 8(034 + Y31 Ay) ~ By 035 — B35 5(O36 + W31 A'3) — Bag

= -%4 -y sV Iy — &4 5045 ~ by5 (B¢ + Vi R3) — dyg
0 0 $(Os4 + V51 Iy) — b5y 5055 — by 5(Os6 + ¥s, K3) - &5

0 0 0 —Pgy 584y — Bs ~ &4

| 0 0 0 0 ~brs —drg

Moreover, (42) gives that

rank

S(E+ BK)— (A+ BF) G
: C 0

Hence, we also have that C(s(E + BK)—-(A+ BF)~'G=0. 0O

In this section we have given necessary and sufficient conditions for the solution of the
disturbance decoupling problem with the extra requirement that the index of the closed loop
system is at most one. The results for the case that only derivative feedback is used are given
in Appendix B.

7 Conclusions

In this paper we have studied the disturbance decoupling problem for descriptor systems.
We have given necessary and sufficient conditions for solving this problem and at the same
time ensuring that the resulting closed-loop system is regular and/or has index at most one.
The proofs are constructive, based on condensed forms that can be computed via orthogonal
matrix transformations.
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Appendix A-Numerical Algorithms

In the following algorithms we need row compressions, column compressions or simulta-
neous row and column compressions of matrices. Such compressions can be obtained in the
usual way via QR-factorizations, rank revealing QR-factorizations, URV-decompositions or
singular value decompositions, see (11].

Algorithm 1

Input: Matrices E, A € R, B ¢ R!*s. with B of full column rank.

Output: Orthogonal matrices U/ € RV € R™ and the condensed form (9).
Step 1: Perform a row compression of B:

with B of full row rank. Set

N I i | A
UE—-.[ J, UA—.[A2J

Step 2: Compute the generalized upper triangular form of ( E,, A,) using the LAPACK routine
DGGBAK from LAPACK [2]:

| Enn Exn | A1 Agy
QEzV_.[ : Eﬂ], QAy1 _.[ 0

with Fy; of full row rank and sE33 — Asy of full column rank for any finite s € C. Set
E1‘V =: [ Ell E]Q ], AIV =: [ Al] A12 ]

Step 3: Perform a row compression:

with F1y of full row rank. Set
0 Ey, - Eq 0, A Ay = A Ap
" Ey ' Ey | A1 Agg An Ay |
By .| B | @ I
ol 0] = [R] =[] o]

EFn B

Remark 4 In Step 2, [ Ey 0

J is full row rank, hence, in Step 3, B, is full row rank.

Algorithm 2
Input: Matrices E, A ¢ R™™ BeR"™™ G ¢ R™P (C ¢ R*7,
Output: Orthogonal matrices U,V,P,W and the condensed form (10).

27



Step I: Perform a row

and and a column compressions:

with ¢y and C3 nonsingular. Set

UEV =: | En Ei , UAV =: An A , UB=: By
E21 E23

Step 2: Use Algorithm 1 to determine orthogonal transformations

Eyn Ey Ay Ag B,
UrbnVi=:] 0 Exp |, UVAuVi=:| Ay Asy |, U,B, =: B
0 Ey 0 Ag 0

such that Fy;, By are of full column rank, and sE42 — Ayy is of full row rank for any finite
s € C. Set
Ey3
Env = [ Ey Ey ], UsErs =: | Es3 |,
Ey3

Ay
AnWVy =: [ Ay A ] s Ugdgz =:| Az
Agz

Step 3: Compute the generalized upper triangular form of([ Eyy Eyus J , [ A Ay ]) using
the LAPACK routine DGGBAK from LAPACK [2].

) Lz E A A,
Q| Ex E43]Z=:[ 1 E:j}’ Q[A42 A43]Z::[ 12 A;z]

with E,5 full row rank and sEs3 — As3 full column rank for any finite s € C. Set

Evz Ers B Erg Az Ay Ay Ay
Ey  Eas _.| E22 Ea —.
7 =: , A A | Z=:| Ay Ao
E32 E33 E32 E33 A A A A
0 < C 32 Ass 32 Ass

and

[l )

Appendix B—Results for the case of derivative feedback only.

In this appendix, we list the results related to the disturbance decoupling of descriptor
system (1) by derivative feedback only, i.e. for the case F = 0. Since these results are
essentially dual results to the ones for state feedback by exchanging the roles of E and A, we
omit the proofs.
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We have the following analogous quantities. Let
p=r([ A 0 ], [£ B D, 3= (TH(B)A, TT(B)E)

and

1

. TL(GyA o TL(G)E TI(G)B
= T;'( ’ C )’

0 0 0
- I TE B G A TZ(| B G E
e 0] 12 o)
7 = rank(TL(G)B) - 7

+,~,-<[T£<l B G J)AJ,[T&[ b6 J)EJ)

Using these quantities we have the following results.

Theorem 15 Given E,Ac R B e Rtxs, Then there exist a k' € R>¥! such that
rank(s(E+ BRK) — A) = r

if and only if
pP+y<r< min(l,rank[ sE-4 B J)
Theorem 16 Given system of the from (1). There ezxists a feedback K € R™xn gyep that
(E+ BR, A) is regular and C(s(E + BR) - A)"1G = ¢ if and only if conditions (15) and
(16) hold and furthermore '
Fti<n-p (46)

Theorem 17 Given a system of the form (1). There ezists a feedback matriz k' ¢ Rmxn
such that (F + BE, A) is regular, of indez at most one, and

C(s(E+BK)-A)"'G=0

if and only if the conditions (8), (40) and (46) hold.
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